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On Direct Methods for Solving Symmetric Systems

of Linear Equations

by

James Raymond Bun:h
Abstract

There has been no stable direct method for solving symmetric
systems of linear equations which takes advantage of the sfmmetry. 1f
the system {s also positive definite, then fast, stable direct methods
(e.g., Cholesky and symmetric Gaussian elimination) exist which preserve
the symmetry. These methods are unstable for symmetric indefinite sys-
tes. Such systems often occur in the calculation of eigenvectors.
Gauselan elimination with partial or complete pivoting is currently
recommended for solving symmetric indefinite systems, and here symmetry
is lost.

We present a generalization of symmetric Gaussian eliminatiog,
called the diagonal pivoting method, in which pivots of order two as
well as one are allowed in the decomposition. We ého;~that the diagonal
pivoting method for symmetric indefinite matrices takes advantage of

symmetry to that only %'n’ wultiplications, at most %-n3 additions,

and % n? storage locations are required to solve A x = b , where A

is a non-singular symmetric matrix of order n . Furthermore, we-ghow

e

that the method 18 nearly as stable ae Gaussian elimination with complete

pivoting, while requiring only half the number of operations and half

the storvage.




o e e A

i

We in:lude & listing of an Algol procedure for the diagonal
pivoting method, which is applicable both to syumetric definite and
indefinite systems,

We discuss the problem of symmetric band matrices and present
an algorithm only for the tridiagonal case. Fuirther, we discuss the
problem of c¢quilibrating symmetric matrices while preserving symmetry

and we present a simple algorithm (and Algol procedure) for accomplishing

this.
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Chapter 1 ; Introduction

1.1 Symnetric Systeme of Linear Equations

Let us consider direct methods for solving the system of linear
algebralc equations, A x = b, where A i1s symmetric.

1f A 1is also positive definite, then Cholesky's method (§2.7)
and .. LD Lt method (§2.6) are fast, stable, and preserve symmetry.

If A 1s symmetric but indefinite (neither positive definite nor é
negative definite), Cholesky's method and the L D Lt method are unstable
snd can produce very inaccurate results (§2.8).

At the present time, if A 18 symmetric indefinite, Gaussian
elimination with partial or complete pilvoting 1s recommended for solving
the system (Fox, p. 80, 185), and thus the symmetry of A 1s ot no
advantage.

Is there an algerithm for the symmetric indefinite case wh'ch is
srteble, 18 faster than Gaussian elimination, and can take advantage

of the symmetry?

1.2 Qur Contribution

We discuss the problem is Ciiapter 2 and review previous efforts in
Chapter 3. In Chapters 4-6 we present a wethod, culled diagonal pivoting,
which fulfills the above requiremeats when restricted to equilibrated
natrices. In Chapter 7 we present s methoi for equilibrating symmetric

matrices in a very simple manner. A variation of the diajonal pivoting

method is presented in Chapter 8; this method is applicable to unequili~
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brated matrices and it fulfilla the above-mentioned requirements. In i

Chapter 9 we show that the diagonal pivoting method is almost as fast
as Cholesky or L D L. In Chapter 10 we perform a backwards error
analysis. In Chapters 11-12 we show that the method is essentially as
stable as Gaussian elimination with complete pivoting (in the sense of
Wilkinson's analysis for Causslan elimination with completely pivoting,
Wilkinsen (1961)). 1a Chapter 13 we show that iterative improvement is
as applicable here as it is for Gaussian eliwination. In Chapter 14

we discuss the problem of symmetric band matrices.

All the results proved are applicable to complex systems where A

is Hermician.

1.3 Summayr

et A be an n X n matrix with max |A

1)

ij| =1.

We want to solve A x =b .

K k-1

Let ~C,_N° denote €, N*+ J C N, where the C, , 0< 1<k,
k Kk Lo Ct g -0tz

ere constante lndependent of n .
Let G.E. denote Gaussian eliminaticro.

The situastion is summarized in the following table:
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AR D Bound on
Reatric~ Element
tioasa Number of Number of Growth
Method on A Mulilplications | Additions | Storage (Stability)
G.E. with 1 2 2
complete det A ¢ O “’s’n ~-3 n? ~n va £ (n)
pivoting
G.E, with 1 1 n
partial det A¥ 0 ~=n? ~zn’ ~ a? p
3 3
pivoting
Cholesky syumetric
Method positive "'% n? “-% n? “’% n? 1
definite
Diagonal symmetric, ~ 1 2 wl 2 ~1 2 Ja
=n >~ =n s n nf (n) x
Pivoting det A # 0 6 4 2 c(a) h(n,a)
<« ~1 3
- 3
1 \| 1/2
L v |
Here O <a <1, f(n) =4 I g \ , h(n,a) 1s a function
k=2 l
dependent on the pivotal strategy, and c(a) and h(n,a) are defined in

§311.6-7. 1In Chapter 12 we show that c¢(a)h(n,a) < 3.07(n-1)0'446 <3v

for a = (1 + /17)/8 = a, -

1.4

Origin of Symmetric Indefinite Systems

The problem of indefinite systems cf linear equations is sometimes

dismissed as academic by the claim that physical pr.blems always generate

positive definite systems of linear equatiouns.

However, the numerical

solution of natural problems often gives rige %o situations which do not

have a physical origin.

We glve two related examples.

In the Rayleigh Quotient Iteration for finding eigenvalues of a

positive definite matrix A (Wilkinson (1965}, p. 172, and particularly

[T



p. 629) we need to solve the systems ( A - ril ) X"

+1 xi , where

* *
r1 = xi A xi/ xi x1 . Here A - ril cannot be definite because
r, lies between the extreme eigenvalues.

In the iuverse iteration method for finding the eigenvector corres-
ponding to an approximation A to an intermediate eigenvalue of a

positive definite matrix A , we need to solve (A -X1) vy = u

+1 i

U ® v1+1/ max (vi+l) . A=-X1 can be indefinite even when A 1is

positive definite (Wilkinson (1965), pp. 618-635).

a4 e A



et e

oo -

[ —

o B 1 — T A 1

Chapter 2 : Presentation of the Problem

2.1 Introduction

The speed and storage capacities of current digital computers
allow us to solve large systems of linear equations by direct methods.
Here we shall consider direct methods for solving a system of linear

equations, A x =b , wheve A 1is symmetric and det A ¢ 0 .

2.2 General Problem : Exact Arithmetic

First let us consider the solution, in exact arithmetic, of
Ax=Db , where A 1s general and det A¢# 0 . We know that Gaussian
elimination will give the solution provided that whenever a zero appears
in the leading diagonal position we interchange that row with a lower
row with non-zero leading element (such a row will exist since
det A ¥ 0), e.g. if All = 0 and if J 1s the least integer for which
Ajl # 0 , then we interchange rows 1 and j . Or, equivalently, there
exists a permutation matrix P such that Gaussian eliminztion without
interchanges applied to P A will give us the solution.

Since we could also do the same with columns instead of with rows,
there exlsts a permutation matrix Q such that Gaussian elimination
without interchanges appiied to A Q +41)1 give us the solutlion.

In matrix notation the Gaussian eltmination algorithm factors A
into A =LVU , where L 1s unit lower triangular, U 1s upper triangular,

and L and U are unique when they exist (Wilkinson (1965), p. 204).

Thus °~. exsct arithmetic there cxist permutation matrices P and Q




such that P A =L U and A Q=1L

1 Y1 U2 » provided only that

2
det A ¢ 0 .

2.3 General Problem : Failure of Previous Attempts in Finite
Precision Arithmetic

In finite precision arithmetic (Wilkinson, 1963) the above algo-
ricim can fail if we interchange only under the condition that the ele-

ment in the leading diagonal position be zero.

e 1] 1/€
Let A = and b =
1 nj 0
l'l o] [e 1
Them A =L U=

. However, 1f € and n are

lire 1] [0 n - 1/¢
small enough, then in finite precision arfthmetic the operation n - 1/¢
yields -1l/¢ .
Let Uc and X, be the matrix and vector of the vaiues of U

and x, respectively, computed in finite precision.

€ 1 -1 1l/e

Then UC = and a = L b = .
0 -1/e ~1/€?

-1 _-n . | -n/e -1 0
So x=U ae [e(l-ney| + , but xc = Uc aa
1 1/e 1/¢e

‘e (1-ne

If n=~ce, then x # , and the error in the firs: component

1/e

of the computed solution is |c| .
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2.4 Condition of a Matrix

Wilkingon (1965, pp. 189-191) shows that the relative error in the
solution of a system of linear equations is bounded in proportion to

the condition number of A , K(A) = al |A|*1 21, te.,, If e = x - x,

then lel / UIx} < p(A) «(A) . We should not expect a small error if

k(A) s large.

< n -
Here A has a very satisfactory condition number, A = = L 1

en-1 | €]
2 -1
Using the one-norm, lal = max z |a, .|, we have k(a) = fal M1A™7H =
13 1 1
1 1=l
1 + max(|€ ) 1
1 - e v B

The computer replaces €n -1 by -1, and the computed inverse is

-1 -n 1 -1 -n/e
(A7) = . Then (A ") b=
1 -€ ¢ 1/e

Thus the trouble lies in

the Gaussian elimination algorithm, not in the matrix A .

2.5 General Case : Stable Direct Methods

(a) Direct Inversion
Direct inversion (the formation of A-I ) of a system requires ~n’

each of multiplications and additions (Fox, pp. 177-179). Gaussian eli-

mination, however, requires only ~-% u® each of multiplications and

additions. Thus we would prefer to use Gaussian elimination if we could

obtain a satisfactory solution.

e
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(b) Stability

Let us attempt to solve A x = b , where A {8 nxn and
det A # 0 . If xc is the solution we obtain from the computer, we
may consider x, to be the exart solution of the system (A + E) y = b, ‘
We might say that the algorithm we use is stable if the elements of E
are small in comparison to the corresponding elements of A . Actually
the term i{s more often used when UJENl / lAl is swall. (Here 1 |
is any norm.)

(¢) Stability for Gaussian Elimination

Wilkinson (1960) showed that for Gaussian elimination we have:

. -t
lhijl < 2,01 max(i-1,1)2 max

r,s

A(n-k+1)

s , where t 18 the number

of bipary digits in the machine, k = min({,j), and A(n-k+l)

is the
reduced matrix of order n—k+l in the elimination process.

The important lesson from the above is that we must be interested
in keeping the elements in the reduced matrices small. There are two
well-known strategies for choosing permutation matrices P and Q
such that Gaussian elimination without interchanges applied to P A Q
will provide sufficiently small element growth in the reduced matrices.

(d) Complete Pivoting

The first strategy, called complete pivoting, requires that we

bring the largest element in the reduced matrix into the leading diagonail

position. This strategy is called complete since we search the entire

reduced matrix., Wilkinson showed that this complete strategy gives




r-1

A@‘k+ﬂ

K
1) < vKkE (k)max IA1j| , where f(k)? - N r

1!] T=2

|
1,3

In words, the elements in the reduced matrices can never become too

large; so this strategy is never bad. It is conjectured that the true
-k+D

Ab k+L
1)

bound is max
|

< k where A {8 real (:l2.4).

Equivalently, the above says that there exist permutation matrices
P and Q such that Gaussian elimination without interchanges applied

32 £(n) 2°° max |A

to PAQ gives max |E, | < 2.0l n
ij' - 1,1

1,3 1
(e) Partial Pivoting
The second strategy, called partial pivoting, requires that we
bring the largest element in the first column of the reduced matrix
into the leading diagonal position. This strategy is called partial

since we gearch only a part of the reduced matrix. This is equivalent

to the application of Gaussian elimination without interchages to P A ,

1 [}
where P 1is a permutation matrix. Here max }d?;k+DL§ 2k .
1,3 ' '
1 00 0 i]
-1 1 0 0 1
-1 -1 1 0 1
This bound 1s sharp since A = . .| , where A 1is

-1 -1-1..... -1 1

Al o0

nxn , has
an

Thus max Igijl < 2.00 n 2% 2" max |Aij| ,
1,3 i,3

and this is very weak when n > t .
Correspondingly, we could use a partial pivoting strategy in which

we bring the largest element in the first row of the reduced matrix into

;




the leading diagonal position. Thus there exists a permutation matrix
¢ such that Gaussian elimination without interchanges applied to A Q

has an error matrix E with max lEijl £20ln 27° 2" max IAijI .
1.3 1,§

(£) The Error Matrix

We see that the error matrix E 1is dependent on the decomposition

L,U , the matrix A , the right hand side b , and the permutations P

and Q@ by which we can pre- and post-multiply A , i.e. E =

E(L, U, A, b, ', Q) , where LU =P A Q . (For the partial pivoting

strategy on the first column of the reduced matrix, we take Q = 1 {n

the above.)

2.6 Symmetric Case : Direct Methods

If A 1is symmetric, then we can only apply congruences to A {f

we want to preserve symmetry. In particular, whenever we interchange
two rows, we must also interchange the corresponding columns. Thus

only a diagonal element can be brought into the leading diagonal position.
The cymmetric form of the Gaussian elimination decomposition L U gives
the decomposition L D Lt , where 1L 1 unit lower triangular, D is
diagonal, and Lt

is the transpose of L . Since we may only perform

congruences on A , the error matrix is E = E(L, D, A, b, N, Nt) where

N 1is a permutation matrix such that L D " anant.

2.7 Symmetric Positive Definite Case

(a) Cholesky's Method
The Cholesky decomposition (Wilkinson (1965), pp. 229-232) 1s the

most well-known decomposition for a positive definite matrix A
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({.e. x Ax >0 for x$# 0 ). Here A = L Lt , where L 18 lower
triangular. No interchanges are required for stabllity.

(b) LD Lt Decomposition

If A 1is positive definite, then its L D Lt decomposition (the
symmetric form of Gaussian elimination) is stable in the absence of
undurtlow and overflow. The elements of L can be arbitrarily large,
but If they deo not overflow then in fact the error matrix L 18 as
small as the error matrix for the Cholesky decompcsition of A .

(Note; L = L D:"/2

).

(c) Method of Congruent Transformations

This method (Westlake, p. 21; De Meersman and Schctsmans, (1964) ) uses
cecomposition (b) with interchanges. Here the largest diagonal element {is
brought into the leading diagonal position at each step. If A 1s posi-
tive definite, then the elements of L are bounded by 1 and the
method is stable.

(d) Summary

If A 1s positive definite, then the above three methods ave stable.

If A 18 nxn , then each method requires ~ 1 n? storage positions,

2
~ % n’ multiplications, &nd ~-% n' additions to solve A x = b .
2.8 Symmetric Case : Failure of Cholesky and L D L Methods in

Exact Arithmetic

If A 1is symmetric but indefinite, then the L D Lt decomposition,
the method of congruent transformations, and the Cholesky decomposition

fail in exact arithmetic for a matrix as simple as

0 1

A= 1 , that is, there exists no permutaticn matrix N such :hat
1 0
~J

bt

b e
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? NAN hasan LDL" oran LL® decomposition.

~ =~

Note that L L% is always positive semi-definite. Thus Cholesky

t
and det A ¢ 0 , i.e. there exists no permutation N guch that N A N =

~

:
]
1
{ : decomposition will fail in exact arithmetic whenever A Js indefinite
|
]
|

N i it where L s lower triangular.
The LD Lt decowmposition and the method of congruent transfor-
mations will fail In exact arithmetic whenever all the diagonal elements
in a reduced matrix are zero, i.e. there exists no permutation N such

that N A Nt has an L D Lt decomposition.

2.9 Symmetric Case : Failure of LD Lt in Finite Precision Arithmetic

The LD Lt decomposition in finite precision can be unstable if

the diagonal elements are too small. The UD Lt decomposition on the

€ 1
matrix A = 1 will produce the same incorrect solution on the
1 n

computer as we saw in §2.3 for Gaussian elimination without interchanges.
However, here there exists no permutation matrix N such that N A Nt
has a stable L D 1.t decomposition. Thus the L D Lt decomposition

fails for symmetric indefinite wmatrices.

2.10 Symmetric Case : Present Situation

|
' 1f we ignore the symmetry of A and apply eliwminetion with complete

' or partial pivoting to A , then in general A will no longer be sym-

metric after the firet step of the elimination. We then need ~ n?

: storage positions in the computer and we must perform =~ L n’ mulei-

| 3

l

! _ plications and “-% n’ additions. But we also have stability for the
i

e
.

b S S taninh et bt 1N e : e
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L U decomposition. This procedure is presently recommended for the
golution of symmetric indefinite systems of linear equations (Fox;

p. 80, 185), and thus the symmetry of A 18 of no advauntage.

2.11 Symmetric Case : Our Problem

1i A 1is symmetric but indefinite, we would like to find an
algorithm which gives a stable decomponsition when applied to N A N*

where N 1is a suiteble permutation matrix, but which also takes

advantage of the symmetry ir order to require only "'% n? storage

3

positions in the computer and to require only ~ = n° wultiplications

onfr

and “'% n® additioms.

Cur algorithm will fulfill all the above requiremeuts wich the

exception that we will need between -11: n® end “’% r® addicions.
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Chapter 3 : Historical Survey

3.1 Introduction

Various methods have been proposed for symmetric indefinite
maitrices. Most of these methods have been unstable, while the stable
methods have required operation countd of at least n®/3, where an
operation is defined to be & multiplication followed by an addicion.

Let us look at some of these methods.

3.2 Direct Methods

Usually direct mcthods ror symmetric indefinite systems are based
on the symmetric form of Gauasian elimipation, L D Lt . which is unstable
in the absence of pivoting.

The L D L* method and its veriant, the method of congruent trams-
formations {in which we use the largest diagunal elvment as the pivot

2

at cack step (§2.7)) require *’%-n storage locations and ~ 3

i

operations. But both methods are unstable (§2.7-2.9). These methods
are of value only if it is known in advance that no element of D will
vanishk or be small.

The Crout factorization (Hildebrand, pp. 429-435; Householder,
pp. 82-83) is also a modification of L D Lt , symmetric Gaussisn 211~

mination, and thus requires "-% n? storage locations and “%-n

3
operations, but it is also unstable.
These variants of L D Lt are unstcLle, Let us consider some

direct methods that are not based on L D Lt .
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The escalator method (Househoider, pp. 78-79) uses the known
solution of a subsystem as a step in sclving the complete system.
The problem lies in finding the solution of the subsystem.

Some headway in this problem was made by Parlett and Reid (1969).
They reduce a symmetric matrix to tridiagonal form by atabilized ele-~
mentary congruences and solve the tridiagonal system by Gausslan eli-
winatlon with partial pivoting. They require ~ % n? storage loca-

tions and ~ % n? operations, and the method is stable.

In October, 1965, W. Kahan (in correspondence with R. De Meersmans
and L. Schotsmans) proposed a method for solving symmetric systems based
on Lagrange's theorem on the reduction of quadratic forms to diagonal
forms (84.3 - 4.4). Kahan proposed the generalization of the idea of
a pivot to include 2x2 submatrices (§4.5).

Then Schotswans (1965) prepared an algorithm in which one searches

all the principal 2x2 submatrices for the one with largest determinant.

This algorithm requires “’% n? storage, but between ~3 n® and
*‘% n’ operations (§5.4).

3.3 Indirect Methods

The Seidel iterative method (Householder, pp. 48-51, 81) and the

~ a2

method of relaxation (Householder, pp. 48-51, 81) require n® opera-

tions for each cycle. The number of cyclee required depends on the

matrix, the starting values, and the needed accuracy. Usually the num-

3

ber of cycles exceeds n , 8c at least ™ n” operations are required.

o

ikl 12 T

e
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The method of steepest descent (Householder, pp. 47-51, 82)
requires ~ 2 n’ operations at each step. Again, usually at least
n sdteps are required., So the number of operations is at least
~2n'.

The congruent gradient method, also called the Stiefel-Hestenes
method, is a finite iterative method designed for positive definite
matrices, but it can be used for symmetric matrices (Fox, pp. 208~-213;
Househoider, pp. 73-78, 82). It requires ~ 2 n® operations at each

of n steps. Once again ~ 2 n’ operations are required. See Reid

(1967) for uscful observations on this method.
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Chapter 4 : Diagonal Pivoting

4.1 Preserving Symmetry

In order to Lave a direct method for symmetric matrices which
will preserve symmetry, we can perform only congruences on the
natrix A , i.e. if we premultiply A by a non-singular matrix X ,

then we must also postmultiply by xt'.

4.2 The LD Lt Decomposition

Let us consider the L D Lt method in greater detail. We con-
vert A to diagonal form by congruences. Let ue consider the first

step of the decomposition:

fa th .
Let A = [ . If a¢$ 0, the As L L,
C B

The variant of L D Lt called the method of conmgruent transforma-
tions (Westlake, p. 21; De Meersmans and Schotsmans) uses the largest
diagonal element as pivot. This 1s equivalent to the L D Lt decom-
position of N A Nt , where N 1is a permutation matrix.

As we saw in §2.8 both methods are unstable for symmetric (inde-
finite) systems.

This instability results from our being unable to bring an off-
diagonal element into the pivotal position. Since we are using only

congruences, we can bring only a diegonal element into the pivotal

et et s e e

and In_1 is the identity matrix of order =n - 1 .
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position. When some off-diagonel element Aji » J > 1, 18 very large,
we can bring Aji into the (2,1) position by congruences, but never
into the (1,1) position. Thus we cannot take advantage of this

valuable information.

4.3 Orthogonal Reduction to Diagonal Form

Any real quadratic form x* A x of rank r can be reduced by an

orthogonal transformation to a diagonal form

2 2
Al Xy + .. + Ar X

where Al, ey Ar are the non-zero eigenvalues of A (Mirsky, pp. 362-
363).
If A 1s an nxn symmetric matrix with det A # 0 , then the
above means that
A=0AO",
where A = diag Al,...,kn , the Xi are the eigenvalues of A , and

0 1is an orthogonal matrix whose 1th column is an eigenvector corres-

ponding to Ai .

However, this O A o* decomposition involves more work than
Gaussian elimination and requires the use of irrational operations,
For a finite-precision algorithm we would prefer a reduction

involving only rational operations.

4.4 Lagrange's Method of Reduction

In 1759 Lagrange devised a method for reducing a real quadratic

form of rank r by a real non-singular linear transformation to a

B T
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diagonal form

2 2
a, x7 + ... +a_x
171 r r'

where al,.-.,ar are all non-zero (Mirsky, pp. 368-374), and the
number of positive (and negative) squares is invariant.

This method corresponds to the L D Lt decomposition of a sym-
metric matrix A when the L D Lt decomposition exists.

Suppose A, = ... = A = 0, while det A ¢ 0 . Then the

LD Lc decomposition for A does not exist. In this case, some

Ara #0 for r¥ s since det A4 0 .

t
et us assume All 0 A22 but A12 $# 0, where A = A",
¢(x1....,xn) =x"Ax 1s a quadratic form in Xysee X where

t
x = [xl,...,xn] .

In this case Lagrange proposed the following transformation:

(4.4.1) X, =y, + Yo o Xg ® ¥y T V¥ Xy = Yauoex =y
2 _ 2
This maps 2 AIZ X X, into 2 A12 (yl yz) . Thus ¢ 18
transformed into a quadratic form ¥ 1in Yyserea¥y where the coeffi-
cients of yi and y; are non-zero. Then we can proceed with the
decompoaition (Mirsky, p. 371-2; Gantmacher, p. 199).

Let us consider the above transformation in macrix form. Then

Ty = i, where

(4.4.2)

19

and ]’.n__2 is the identity matrix of order

et L s el



Thue xt A x = yt (Tt AT)y, and ™AT sa symmetric matrix
t t
with (T° A T),,,(T" ATy, $0 .
Hence we have avolded the problem of zeros on the diagonal of A
1 1
by use of the 2x2 matrix
1 -1

This procedure is also applicable to complex quadratic forms.

4.5 Kahan's Proposal

In 1965 W. Kahan (in correspondence with R. De Meersmans and

L. Schotsmans) proposed that Lagrange's method could be made the basis

of a st~ble method which preserved symmetry.

Kahan adapted Lagrange's method to finite precision by observing
1 1

that the use of in (4.4.2) corresponds to the use of a 2x2
1 -1

submatrix as a pivot in a decomposition by linear transformations and

that a 2x2 could be chosen 1f the diagonal elements were zero or very

small (§52.8-2.9).

Suppose we used a 2x2 submatrix P as a pivot. Let us look at

P|C
such a decomposition. Let A = » where A = At , det A¢ 0,
cC|B

A is nxn, P 18 2x2 , C 18 (n-2)x2 , and B is (n-2)x(n-2). Then

P )

t
A=L — L; , where L, =
Lo 's-cplct| ! 1

the identity matrix of order k .

How do we choose whether to use a 1x1 or a 2x2 pivot? Can both

1x1 and 2x2 pivots be bal?

20
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4.6 Pivotal Strategy

Kahan considered two pivotal strategles. In the first, one

- 2 o a2
searches the entire matrix for m, in;xk {A11 ' IAjj Ak Ajk|} .

1t L "Aii » then interchange rows and columns 1 and 1 and use ‘Ali
as a 1x1 pivot., If L |AJj Akk - Aijl , then interchange rows and

_ A A K
columns 1 with j and 2 with k , and use 3 as a 2x2 pivot.

T O
Since we search the entire matrix, this is called a complete
pivoting strategy, in analogy with complete pivoting for (aussian
Elimination. However, the searching here requires between “-% n’
and “'% n? multiplications to find o, for all steps (depending on
the number of 1x1 and 2x2 pivots used). The decomposition itself

requires “’% n® wmultiplications. Thus this strategy would require

3 3

between ~-% n” and “’% n° multiplications to solve A x =bH
(§5.4), which is more than for Gaussian elimination. Hence Kahan
rejected this strategy.

Kahan considered a second pivotal strategy in which we scan only
the first column and the main diagonal; this is called a partial pivoting
strategy, in analogy with partial pivoting for Gaussian elimination.
The searching here only requires between ~-% n? and “'%-nz multi-
plications.

- 2 a2
We take m Ta; {Aii‘ IA11 Ajj AIJI} . However, this partial
]

pivoting strategy is unstable.

I U
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2€ € €
let A= ¢ 7€ 1|, where 0 < g << 1
1
€ 1 3¢
3 1
2 | o 22
Then mp |A11 A22 A21| Z € - Thus |2 . would be used as
S
2
a 2x2 pivot, and the reduced matrix A(l) is [~ %-% + %-- % €) .

If ¢ 1is small cnough, then in finite precision arithmetic the

% . This can cause highly

operation - € ylelds - +

wr

1.
€

wioe
wirs
win
™ |-

inaccurate solutions, as in §2.3.

So tuls partial pivoting strategy is unstable. For these reasons

Kahan rejected this method for use on symmetric systems.

4.7 Parlect's Observation

In 1967 B. Parlett observed that the examples for which the partial
pivoting strategy was unstable were also unequilibrated. A symmetric
matrix A 1is equilibrated if max lAij' = 1 for each row index 1

(87.1). Parlett conjectured that the partial diagonal pivoting strategy

would be stable when applied to equilibrated matrices.
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Chapter 5 : The Decompesition for Diagonal Pivotfing

5.1 Definitions
Let A be an nxn symetric non-singular matrix. We want to
reduce A tc the "diagonal" form M D Mt by congruences, where D

is a block diagonal matrix, each block being of order 1 or 2, end M

i8 unit lower triangular with M1+1’1 =0 {f D1+1'1 $0 .
= - - - 2
Let u, :m;( lAijl » Yy m:x IA.uI »and v |aL A, - AL
5.2 The Decomposition

Let A= , where C 18 3 X (n-j), B 18 (n-j) X (n-j),

and P 18 j x J , where j = 1 or 2.

-1 l-P l 0 t
If ? exists, then A = L1 1 T L1 » where
lg ( B-CP " C
L1 = , and Ij, In-j are the identity matrices of order

j and n-j, respectively. Any element of C P-l will be called a
multiplier.
5.3 The _1x1 Pivot

Suppose P 18 of order 1. (We shall not make a distinction
between a matrix P of order 1 and its element, which we shall also

call P )

N g trimoh i ¢ b g e
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Let us assume that we have already intarchanged rows and columns

8o that IPI - u1 , 1.e. P 1is the maximum diagonal element.

If Pl exists (.e. M # 0), the. let AL Jp o cplct
-1, , (n-1) _ _ -1
Then (C P ), =4, /P and Aij Atel, g4 P, AJ+1’1 .

Since IPI -y and uo = max |A » we have the following:

1,]

Lemma 1: If P 48 of order 1 and |P| = u; # 0, then

ijl

-1
(1) m;x |cp )1| g_uolul ’

(i1) max |A(n-1)

| < a+uupu, .
1y 0'M17%o

Thus a 1x1 pivot P is useful iff |P] = W, 1s large relative

to My, l.e. if ullu0 is bounded away from zero.

5.4 The 2x2 Pivot

Suppose P 18 of order 2 and P-l exists (i.e. v £ 0).

Here the (k-l)St row of C P-l is:

-1 1
(Aprr &) B0 = T —ar W Agp ~ Ao Mg A A T A Ay
1 422 ~ 4y
(-2) _ o _ ool ot (n-2) _ ) -1 ~
let A B-cehct . Then ] Aaa,ge2 - © Py ¢
-1
(CP ) Cy

Since Vv = |A11 Ay, - A§l| , |Akl| and |Ak2| < Mg » and

'Alll' IAzzl <My , we have the following:

e Al Beies i ertals nmin e 4t
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Lemma 2: If P 1s of order 2 and |det P| = v ¢ 0, then

-1 :
(1) max [(C P )ijl < hg (g +up/v,

i,]
(n-2)
(11) max IAij | <1+ 2ug (g + 1)/ uy
i,

Thus a2 2x2 pivot 18 useful {ff we can bound Vv away from zero.
In particular from §5.3, we need to have Vv bounded away from zero

vhenever ul/u0 is near zero.

{Note that the use of the standard norm buund would give too crude

an analysis for Lemmas 1 and 2.)

5.5 Bounding Vv
We can easily bound v from above, since v = 'All A22 - A%ll <
2 2 2 . A

IAzll + IAlll IA22| f,uo + ul . Thus we have:
Lemma 3: |detP|-viu8+ui .

This upper bound 1is sharp ifor

- -l

But, as we saw in §5.4, we need a lower bound on Vv which bounds

p——

|
|
!
3
!

s A A e
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v awvay from zero when ulluo is small. Clearly, such a lower bound

does not exist without interchanges.

e 0 1 c 0
Consider A = |0 0 1l with P = [é 0] .
1 1 ¢

We shall exhibit three differeat pivotal strategies in §6.1, §6.4,
and §8.1, which provide us with the necessary interchanges so that we

have a 2x2 pivot P with:

|det P| = v > ug - “i . (86.2, §6.5, §8.2).

Assuming this lower bound, we have:

Lemns 4: If |det P| = v >yl - ul>0, then

(1) mex [ p™h | <ug/tug - u)) for k=1,2,
(11) max lAg"Z)l < g [1+ g/ Qg - wl

The lower bound on VvV > 0 1is sharp for

o Mg 0 ]

”o\\\ j\ N

Thus we have a good bound cn element growth in the reduced matrix,
gince {f ul/uo is small then 1 - ul/u0 %+ 1. We shall see in

Chapter 10-12 that stability follows from this.
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5.6 The Reduced Matrices
(n) (n) (n) | () _
Define A R uo uo R ul ul s V AV

Let A(k) be the reduced matrix of order k . Let
(k) (k) (k)2|

u(()k) = max IA("“)I . u(k) = max |A(k)| and v®) < |A Ay
]

i,]
All considerations in §§5.2-5.5 hold for A(k) .

5.7 Criterion for Chcosing a 1X1 or 2x2 Pivot

We must find a proper criterion for deciding whether we shall use
a 1x1 or 2x2 pivot.

In Chapter 10 we shall show that the elements of the error matrix
are bounded in proportion to the elements in the reduced matrices. For
stability we must ensure that the elements in the reduced matrices do
not become too large.

i1f we made our criterion to be the minimization of the number of
multiplications (additions), then we would want a 1x1 (2x2) pivot at
each step. But this would be unstable.

Instead, let us aim to minimize the element growth that can take

place in the transformation from one reduced matrix to the next. For

further remarks see §12.6.

Let F;k) be the growth factor permitted by choosing a jxj
(k)

pivot for A , where j=1 or 2.

If the hypothesis of Lemma 4 holds (i.e. v( ) > uék)z uik)z

14

for all A(k) ), then by Lemmas 1 and 4:

27




ka) -1+ uék)/ufk) , F;k) -=1+2/Q - ul(k)/uék) ) I

ka) has a good bound if u{k)/uék) is not too small; while

ng) has a good bound 1f pik)/uék) is not too large. Thus we are
led to the following:
Definition: For 0 <a <1, let Sa be the folloving strategy:

for each reduced matrix A(k) » choose a 1x1 pivot iff

Uik)/uék) > a (and a 2x2 pivot otherwise).

With S = we have Fik) <1+ 1l/a and F;k) <1+2/(1 ~-qa) for

all A(k)

But at any stage the choice of a 2x2 pivot carries us further

towards the complete reduction than does the choice of a 1x1 pivot.

Since the growth factors from reduced matrix to reduced matrix are

multiplicative, it is natural to compare the square of the growth fac-
(k) (k)

tor Fl permitted by choosing a 1x1 pivot for A with the growth

factor Fék) for a 2x2 pivot.

Thus the problem is to find min max {(1 + 1/a)?, 1 + 2/(1 - w)} .
O<a<l

Theorem: min max {(1 + 1/c)2 , L + 2/(1 - a)} = (9 + V/I7T)/8
0<a<l

and is achieved by a = aj = Qa+ /17)/8 .

Proof: The equation (1 + 1/a)? = 1 + 2/(1 - a) reduces to a

quadratic with roots (1:/I7)/8 . Since the left side of the equation
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is monotone decreasing, the right side is monotone increasing, and

a >0, the minimum is given by & = aj= (1 + Y17)/8 . q.e.d.

We immediately obtain the following bounds on multipliers and on
elements in the reduced matrices under strategy S(1 . Let m be any

multiplier.

Corollary Z: Under strategy Su , 1f for all A(k) R

v( ) > uék)z u{k)z , then:

1/a for a 1x1 pivot

lnl| <
1/(1 -~ a) for a 2x2 pivot

For a = a, =(1+/i'7)/8;

(/17 - 1)/2 < 1,562 for a 1x1 pivot
(IT + 7)/4 < 2,781 for a 2x2 pivot
Corcllary 3: Under strategy S with a = ao , 1f
v( ) > uék)z u{k)z for all A(k) , then for 1 <1 <n:
udh gl + 2182 <y st
In Chapters 11-12 we will give a much better bound on the elements

in the reduced matrices.

The strategy S allows us to proceed in the following order:

(1) calculate ué ) and uik) ;
(2) if u§k) 2 0, ugk) then we use a 1x1 pivot;

(3) otherwise we find a 2X2 by some strategy.

(k) (k) < (k)

iff My 0 Yo

Thus we search for a 2x2 for A
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Chapter 6 : The Complete and Partial Pivoting Strategies

6.1 Complete Pivoting

Ay we saw in Chapter 4, the partial pivoting strategy can be
unstable when used on unequilibrated matric:s. The trouble lies 1in
the fact that we do not have a lower bound on the 2x2 principal minors
which bounds them away from zero when the diagonal elements are small
(85.5).

Let us therefore consider a complete pivoting strategy ("complete"
in the sense that we search over all the principal 2x2 minors, cf. §4.6).

By interchanging rows and the corresponding columns it is possible
to bring any diagonal element into the (1,1) position or any principal

2x2 submatrix into the leading 2x2 position.

- _ a2
Let Vv, maxlA“A“ AY
1,1
The complete strategy involves:

(1) finding u, = m:x lAii‘ » Mg - :a§ ‘Aijl :
»

(2) choosing a 1x1 or 2x2 pivot according to Sa (85.7);

(3) for a 1x1, interchanging so that |P| = b, (85.3);

(4) for a 2x2, finding v, » and interchanging so fhat |det P| = v,
{§5.4).

This would be repeated for each reduced matrix.
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6.2 Bounding vc

However, the result of all this work is that we do obtain a lower

bound for vc in terms of Hg and u1 .

Theorem 1: g - uj < v, g_ué + ui.

Proof: The upper bound follows from Lemma 3 of §5.5. Let

= A ‘Then Vo = max |A

Al A_A -A:_slv
1,]

Mo rsI i1 Ajj - 1j| Z-' rr " ss

2 _ 4 A > p?-

2 2 o a2
Ho rr Yes = Yo T M 0 8ince Yo Ata and

u, = max |A
1 i

iil g.e.d.
Thus Lemma 4 in §5.5 holds for Ve when My < My According to

k)

Sa ,» we choose a 1x1 pivot for the reduced mactrix A if

W 5

0 uék) » vhere &g = (1 + /17)/8.

In Chapters 10-12 we shall see that stability of this complete

pilvoting strategy follows.

6.3 Operation Count for Complete Pivoting

Unfortunately, the operation count here is much larger than we
desire.

The calculation of v(k)

e requires k(k-1) multiplications and

additions. Llet p be the number of 1x1 pivots used (s0o q = (n - p)/2

pivots of order 2 are used). Let Z(j) denote summation over those

(k)

indices k , 1 <k < n, for wvhich A uses a pivot of order }

31
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(k)

The nearching for all the vc requires:

6.3.1) T ki - 1) + TP k(k - 1) auletplications and additions.

n
Now (6.3.1) ¢ ] k(k-1) =Sna(a+1)@-64) ~3a® with
r=]1
nf2 1
equality iff p = n , while (6.3.1) > 2j(23 ~ 1) = = n(n + 2)(2n - 1)

sh1 12

n® with equality Iff p=0 (i.e. q = n/2).

O e

From Chapter 9 we see that the rest of the work for solving A x = b

n’ multiplications, and between =~ % o’ and

- 3

would require ~

n® additions.

o

Thus the complete diagonal pivoting strategy requires between

n' and “’% n® multiplicationa, and between “‘f%-n

3 3

n

~

(WYX}

and ~

[y ]

additions. (To be exact, “‘% n® + %—p’ multiplications and

~2 nd + p3 additions are required, where p 18 the number of 1x1

12

|-

pivots used.)

Examples: If A is nXn and positive definite, then p = n .

[0 1 -

0

If A= is n*n with n even, then p = 0 .




e S

33

6.4 Partial Pivoting for Equilibrated Matrices

As ve saw in §66.2-6.3 the complete pivoting strategy is stable,
but it involves more work that we are willing to perform, while in
Chapter ) we saw that a partial pivoting strategy is unstable for
unequilibrated matrices.

We shall now show that a partial pivoting strategy is stable
when applied to equilibrated matrices (with equilibrated reduced
watrices).,

Let A be equilibrated, i.e. let max |A
]

where o > 0 (usually we normalize by taking Hy * 1),

1j| = uo for every |,

N - - Al
Lec v mi.x 1Ay, Ay - ALl -
The partial strategy involves:

(1) equilibrating A (thus we know Mo );
(2) finding uy and choosing a 1x1 or 2x2 according to Sa (85.7);

(3) for a 1x1, interchanging so that |P| LT (85.3);

1

(4) for a 2x2, finding Vg 0 and interchanging so that |det P| = v,

(85.4).

6.5 Bounding vP

Now let us find a lower bound for vp

Theorem 2: If A is equilibrated (max |A for every 1),

| = u
T 0

2

- 1,2 2 2
then uO ul i_vp f_uo + ul .




Proof: The upper bound follows from Lemma 3 of §5.5 By

equilibration, either ({) |All|- Mg » oF (11) there exists integer
k > 2 with IAkll =My - If (1), then uy =u; and, trivially,

2 _ 2, Az | o
v, > u§ - w = 0. If (1), then Vo > !All A Akll

? N 2 2
bo T A Mk T Mo T M q-¢.d.

Thus, lLemma 4 in §5.5 holds for vp if uy < According to

UO .

Sa , Wwe choose a 1x1 pivot for the equilibrated reduced matrix A(k)

(k)
1

of order k iff >a u(k) , where a. = (1 + /17)/8 .
- 0 0

0
Also, stability of the partial pivoting strategy for equilibrated

matrices follows from Chapters 10-12.

For A = A(n) , only 2(n - 1) multiplications and additions are
required to calculate v;n) . Thus the calculation of vék) for all
k requires between %-nz and n(n - 1) mnultiplications, compared
with between % n® and “’%'na fcr all the vék) in (6.3.1).

6.6 Criticism of the Partial Pivoting Strategy

The drawback to this method and the crite.ion which we have found
for the pivoting strategy is that the matrix mus: be equilibrated at
the beginning and then each reduced matrix should be equilibrated.

But an algorithm for equilibrating symmetric ratrices has never been
exhibited, 1.¢., for an arbitrary matrix A , ve seel diagonal matrices

Dl s 02 such that D1 A D2 is equilibrated, 'nd if A 1is symmetric,

we need D, = D2 in order to preserve symmetry.

1




We resolve the above predicament by two fundamentally different
approaches. In Chapter 7 we exhibit an algorithm which can equili-
brate any symmetric matrix in a very simple way. In §66.1-6.3 we
showed that complete diagonal pivoting avoids the problem of equili-
bratton and Is stable, although the number cf multiplications and
additions required is more than we desire. But in Chapter 8 we shall

exhibit a new version of diagonal pivoting which is applicable to

unequilibrated matrices; we call this unequilibrated diagcenal pivoting.

[his method will show that equilibration (in Wilklnson's sense) is
unnecessary for this strategy and this is the algorithm that we

recommend.

35
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Chapter 7 ; Equilibration of Symmetric Matrices

7.1 Introduction

Wilkinson (1961) recommends that a matrix be equilibrated before
applying any algorithm for solving a system of linear equations. A
matrix A 1s said to be equilibrated if all its rows and columns have
the same length in some norm. Wilkinson's rounding error analysis for
Gaussian elimination (Wilkinson, 1961) gives the most effective result-
when the matrix is equi”!brated, since a small perturbation of one row

(or column) is then of the same magnitude as that of any other row

(or column).

7.2 Equilibration of General Matrices

In finite precision we modify the definition of equilibration.
(In this chapter we shall confine ourselves to the norm

Ixt_ - max|xi| .)

A matrix A 18 row equilibrated if, for each row index 1 ,
B‘lu <  max IA | < u, , where 18 the number base of the floating
0~ iyt - "0
1<)<n
point system. A matrix A 1is column equilibrated if, for each columu

index § , B_1 Hg & max ta
1<j<n

A matrix A s equilibrated if it is both row and column equili-

TMELE

brated.

Usually we normalize by choosing Uy = 1 . We shall assume

uo =1 1in this chapter.
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The use of B permits a matrix to be equilibrated by changes of
exponent only.

In order to row (column)-equilibrate A we seek a diagonal matrix
“L (DZ) such that Dl A (A D2) is row (column)-equilibrated. To
equilibrate A we seek diagonal matrices DI’DZ such that D1 A D2
is cquilibrated. tHowever, there is no unique equiiibrated form of a
matrix for this norm (Forsythe and Moler, p. 45). The various equilfi-
brated forms may differ greatly in their desirability for use in
Gaussian elimination, since the various equilibrations cause different

choices of the pivots (some are good choices, others are bad).

For the vne-norm (Ixl. = z !xi;) the equilibration is unique
1

is]
but the convergence of the algorithm is slow (Sinkhorn (i9€4), (1967);

Siukhorn and Knopp).

7.3 Difficulties ¥ith Symmetric Matrices

If A is symmecilc, then we allow 8—2 Ho instead of 5_1 U

0

as the lower bound i1 the definitions of row (and column)-equilibrated.
If A 1is symmetric, then A 18 row equilibrated 1ff A 1s column
equilibrated 1{f A is equilibrated.

In order to equilibrate a symmetric matrix and still preserve the

~

symuetry we seeck a diagonal matrix D such that D A D 4s equilibratcd,

1 2
Let A = , D, = diag {1/2, 1} , D

1 = diag {1, 1/2} , and
2 1/2

2

D, = diag {V2/4, Y1} .
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1/6 1 1 1
Then 9, A D = , D, AD, = , and
ol e 272 s
[1/78 1
D,AD, = are all equilibrated.
3% 73 Ll L

Criteria for choosing pivots are based on their size. It is an
open probiem whether all equilibrated forms of a symmetric matrix glve
gsatisfactory pivots as judged by the usual criteria.

There is no known algorithm for the symmetric case.

7.4 The Obvious Attempt
Let us cc sider D AD . Let D = diag {dl,...,dn} and A be
an nxn symmetric matrix. Then (DAD)1j - d1 dj Aij . Let us assume

that no row of A 18 all zero.
The method which seems the morc obvious 1is to equilibrated one

row at a time: Let D, = diag{dl,l,...,l) .

Aij for 4,3 > :
Then (D,AD.),, =] 4, A for 11, j#1
11y ) 4 or Jil, 141
| 2. a for 1,j=1
11 ’
-

So choose dzl = max {V ‘Alll , max |A1j|} .
2<4<n

How DlADl is symmetric and max I(DlADL)]jI = 1 . However,
1<<n '

when we tr; o equiilbrate the second row we usually destroy the equi-

libration of the first row.
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This method is related to the Sinkhorn algorithm which equilibra-
n

tes in the one-norm, Ixl = 2 |x
b

il , rather than the *-norm,

Ixks = max |x1| , which we are using (Sinkhorn (1964), (1967); Sinkhorn
i

and Knopp; Marcus and Newmen).

7.5 Equilibration of Lower Triangular and Symmetric Matrices

The problem with the method in 87.4 is that we try to do tco much
at each step.

let us consider A = At a1+ A+ ™ s, where A 1s a diagonal
matrix and T 1is strictly lower triangular (i.e. ’I‘ij =0 1if j>1).

lemma 1: If T + A 18 row-equilibrated, themn A 18 equilibrated.

Proof: Let us consider the 1th row of A . Since T+ 4 18 row-

equilibrated, max IAij' =1 . But IAjil <1l for 3 >1 , since
1<9<4

|T | <1 and A, =T for § > 1 . Hence max |A =116
13 it 14y 1<y<n U

each 1 , q.e.d.
Now we shall show how to construct D such that D(T + A)D 1is
row-equilibrared 1f T + A has no all zero row., In this case, by
lemma 1, DA D 18 equilibzs~~d.
In fact, 1t is eas: .uilibrate the lower triangular part
of a symetric matrix and s. .. preserve symmetry.
Lemne 2: let B be an nXn lower triangular matrix (i.e. B, = 0

4

for 3 > 1 ) with no all-zero row. For 1 < { <a, let

di = max { /"TEIIT . max ldj Bijl }. Then D BD 1is row equili-
1<4<1i-1

brated, where D = diag {dl""’dq} .
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Proof: By induction. Let d, = 1// |Blll » and B, $0

2 -
by hypothesis. So Idl Blll 1.

Assume that dl""’di-l > 0 have been chosen so that
max [d, d B | =1 for 1<j<i-1.
1<k<] J Tk )k
Let d;l = max { / |Bii| s WAaxX |d Bi I } . By hypothesis,
144 34
-1 ,
di >0 . Then max |di dj 31j| 1.
]
Hence the d, exist for 1 <41 <n by induction. Let
D = diag {dl""dn} . Then D B D is row-equilibrated. q.e.d.
7.6 The Algorithm for Null Rows in the Lower Triangle

But what do we do if All = 0 or if, for some {1 , Aij =0

for 1< 4§ <17?
Let us form D as 1in §7.5 with the exception that we set

= = <
d1 1 if A1j 0 forl1<j<i.

<1

Thenfor all {,j : |(D A D)ijl < .

DAD fails to be equilibrated only 1f for some 1 :

(a) Aij =0 for 1<3<1, or
(b) max |d, A, | <1.
RO Bt

If the ith row of A 18 not null, cthen the maximum in (b) is

positive. For such 1 , define e, by e, = max |d, A | ; for all
i i 1 34

other {1 , let e, = 1 . Let E = diag {el,...,en}
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Theorem: Let A be an nXn symmetric matrix with no null row.
Let D and E be constructed as above. Let A =DE ., Then A s
a dlagonal matrix, and A A A 1is equilibrated.

Proof: If e, # 1 then the maximal magnitude of row 1 in D AD
; . 18 raised to 1 by forming ED A D E , while in all other rows the ith

element is increased in magnitude but not in excess of 1 .

The theorem follows from §7.5. q.e.d.

7.7 Summary of Equilibration of Symmetric Matrices

If A 1s an nXn aymmetric matrix with no null row, we can find

a diagonal matrix D (in two sweeps, although only n steps) such

that D A D is equilibrated (in the ®-norm, Vxi_ = max Ixil ).
i

We can express D by the following algorithm: For {1 = 1(1l)n :

max { VI&,,|, wmax |6, A, |} 1f A, ¢ 0 for
11 1<j<i-1 3 1) 13
§,7 = some j , 1 <3<

1 if Aij =0 for 1<4i <1,

Then, for { = 1(1)n:

y-611 if A1J #$0 forsome } ,1<j<1
a7t

A

1
1\ max |Gj Aji| 1 A= 0 for 1<3<i
1+1<j<n

Let D = diag {d ,dn} . Then D AD 1is equilibrated.

10
1 The work required to ejquilibrate an nXn symmetric matrix with no

all zero row is:

n square roots
| n(n+l) multiplications
(n-1)? adaitions
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In practice the algorithm can be expressed in a very simple
manner in Algol (see Appendix B) and can be performed in only n steps.

(We would actually set £, = 6;1 =0 {f A, ., =0 for 1 <3j<1 and

13

then search for max |6, A 1| iff fi =0).
i+1<j<n i
7.8 The Algorithm for Exponent Adjustment

In practlice, we actually only require that 6-2 < max lAi | <1
1gen M

for every i instead of max |A,,| =1 for every 1 sc that we need

lzjsn 1
only adjust the exponents of the elements of A .

Then our algorithm takes the following form:

Qa
i3 . ~1
= <
Let Ay =Yy B for j #1i , where B < |Y1J|__ 1 , unlers
Aij = 0 when we take Yij =0 = aij .
%11 -2
Let Aii = Y4 8 , where B © < |Y11| < 1, unless A11 =0

0 1f A, =0 for 1<3<i

ij
For 4 = 1(1,n : set 61
max{%&ii, max (., - 6.)} otherwise
1< )
61 if 51 #0
For i = 1{l)n : set di =

max (a,, =6.) 1€ &, =0
agen 30 )




d
This will give 8”2 < max |B
1<i<n

i+dj
Aijl <1 for every 1 .

{(This equilibration can be performed very rapidly in mach ne

language.)
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Chapter 8 : Unequilibrated Diagonal Pivoting

8.1 Maximal Off-diagcnal Element

In order to obtain a lower bound of ué - uf for vp in Theorem
1 in §6.3, we needed the fact that, due to equilibration, there existed
an element of maximal absolute value in the first column. However, 1if

Hy < Mg o then there exist integers i,§ wieh 1 > j , such that

iAiJ| = kg - Ve need only bring the element Ayy P to the (2,1)

position and then we will have a 2x2 pivot with a maximal vff-diagonal

element. We shall call thils variation unequilibrated diagonal pivoting.

Let W, = max lA | = |A l , where r,s are the least such inte~
0 . ij rs
1,3
gers. Let U, = max |A11|
i
Let v, = |a__ A -aA% ]|,
b IY ss rs

This strategy invclves:

(1) finding vy and the least integer k with iAkk' = Hy

(2) finding o and the least integers r,s with |Ars| =g

(3) choosing a 1x1 or 2x2 pivot according to Sa (85.7);

{(4) for a 1x1, interchanging rows and columns % with k so that

[p| = b, (65.3);

(5) for a 2x2, interchanging rows and columns 1 with r and 2 with s

so that |det P| = v and |A

b (85.4).

21! = ¥o

This procedure is repeated for each reduced matrix.
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Note that calculating vb requires only 2 multiplications instead

of n(n-1) for v, and 2(n-1) for vp .

Clearly from the definitions ¢f v, , v, and v and from Lemma

bl
J of 5.5, we have:

. 2 2
Lemma 1: vh :_vp < vc < uo + ul .
8.2 Bounding v,

Let us now bound vy from below. From §8.1, we may assume

= —~ 2 =
b = 1A1) Agy ~ A5l and Ayl =g .

I - 2 _ .2 2 2
Theorem 1: If |A21| Mg » then g = by < v <ug +uj .

Proof: The upper bound follows from Lemma 1.

2 = 2 _ -
Aoyl =g Ay A zug -y
G.e.d.

V,

stace Ay | = ug vy = Ay 4, -

Here, as in 86.2 and §6.5, symmetry was used to get the lower bound
on V. . By symmetry, if My = |A21| then |A12| =g -

If A were not symmetric, then 1y, = la does not imply that

2!

(in fact we could have A _ = 0). Thus no such non-negative

=M 12

LIPS

lower bound on the determinant of 2xX2 submatrices can exist for non-
symmetric matrices.

Thus Theorem 1 implies that Lemma 4 In 55.5 holds for Y% if

My <¥g o According to Sa (65.7), we would choose a 1x1 pivot for the

/
(k) of order k 1iff uik) 2—“0 uék) , where

reduced matrix A
uo = (1 + Y17)/8.
In Chapters 10-12, we shall see that stability of this strategy

(for unequilibraced matrices) follows from the above.
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8.3 Comments on this Strategy

From §8.1, we see that we need do no searching over the 2x2 prin-
cipal minors, but we merely choose that principal minor with maximal

off--dtagonal element., In Chapter 9 we shall see that this sesrching

uék) requires between —l‘--n3 and ~ 1 n’ addicions

for the 12 3
and no multiplications.

We used the terws 'complete' and 'partial" strategies in Chapter
4 to distinguish between searching over all the 2x2 principal minors
and over the 2x2 principal minors with off-diagonal element in the
first column.

In analogy with Gaussian elimination with complete pivoting, we
would like to call our strategy in 88.1 a coumplete pivoting strategy
since we search all of A(k) for its maximal element, but we do not
wish to cause confusion with the use of the word "complete' in Chapter
4 where it meant searching all the 2x2 principal minors.

Now, in analogy with Gaussian elimination with partial pivoting,
we ask if there could be a partial strategy where we search nnly the

(k)

first column of A for its maximal element.

Such a partial strategy requires at most only %’n (n-1) addi-

tions to calcuiate the maximal element in the first column of all the

reduced matrices. If such a partial strategy werc stable, then this

strategy would require orly *-% al multipliications and ~<% n

additions tosolve A x-b , a =AY, det A 40 .

3

[N PR

b d




n

+ e e————
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However, any such partial strategy is unstable for unequilibrated

matrices, as the following example shows:

1 -
2(!(-: € [
1
A € 2 a € 1
1
€ 1 3 a €

where 0 < a <1 and 0 < g << 1 .,

8.4 A Partial Strategy for Equilibrated Reduced Matrices
Clearly, 1f A = A(n) and each of its reduced matrices A(k) is
equilibrated (i.e. max |A;§)| = uék) for esach 1 ), then the partial

strategy, whereby we choose the 2x2 principal submatrix whose off-

(k)

diagonal element 1is the maximal element in the first column of A ,
is statle since, by the equilibration, such a maximal element in the

(k) (k)

first column of A is also a maximal element of A

But we would have to equilibrate A at the start, and then equi-
(k)
librate each reduced matrix A .

lLet us now consider such a partial astrategy when A 1s equilibrated,

but we do not equilibrate the reduced matrices.

8.5 A Partial Strategy for Unequilibrated Reduced Matric:s

Let A be an nxn symmetric equilibrated non-singular matrix with

max hijl = Yy for each 1 . We shall now consider the partial strategy

3

defined in §88.3-8.4, but we shall not equilibrate the reduced matrices

RO

for k< n .
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Let A(k) be the reduced matrix of order k ; let A(n) = A,
let ék) = max |A(k)| (We shall not actually calculate uék)).
1,1
Let u{k) ~ max h(k)| lA(k)l say. We shall agsume we have
i

interchanged rows and columns so that | (k)l (k) Then let
A e (a0 s 2 M w89 unate x<") au™ e
1 -0 0 0

We shall use a 1x1 pivot 1iff u{k) >a A(k) Let m be any

mulciplier (85.1).

( )
A

1f uik) >a X(k)

then we use as a 1x1 pivot, and

|m I < x(k)/u(k) < 1l/a , while max IA(k 1)|< ué ) + X(k)/a <
i,]

(k)
Ho (1L +1/a) .

If pik) <a 2™ then we interchange so that |A (k)] AL
Lot &) IA(k) Agl;) (k) . so o® > N ugk)2 > (- a?) FON
Then [m] < 2% @) 4wy /00 g
o as™21 < ug? + 207 0 4,0y 8 - a u )

As in §5.7 we would choogse a = ag = (1 +/17)/8 . Then

max |A(k)| < 2.50"% 4 for each A% .
i3 0
1,1
But we canrot obtain a bound on A(k) as in Chapters 11-12 since
(k) (k)

we cannot express pounds on V in terms of o
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We leave the significance of this method (§8.5) in relation to

the method in §§8.1-8.4 as an open question.
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Chapter 9 : Operation Count

9.1 Solution by Diagonal Pivoting

We now consider the amount of work required to solve A X = B
by the (unequilibrated) diagonal pivoting method (Chapter 8), where
A {8 an nXn non-singular symmetric matrix and B is an nxk matrix,
i.e. there are k right hand sides.

In matrix notation, we perform the following steps:

(1) a=MDn" .
2) c=m1yp .
-1

(3) Y=D"cC.

(4) X

n
=
<

Here M—t means (M )
Let p be the number of 1x1 pivots used. So q = % (m - p)
pivots of order 2 are used. Let A(i) be the reduced matrix of order 1 .
Definicion:
i if A(i) uses a 1x1 pivot
pivot {i] = 2 if A(i) uses a 2x2 pivot

0 1f AU*D

uges a 2x2 pivot
We shall use the term Mults (Adds) to mean the number of multi-
plications (additfons). We shall count a comparison as an addition.

We shall use Z(j) to denote summation over those indices 1 ,

1 <4i < n, such that pivot[i] = § .

9.2 Summary of the Work Required

Steps (1), (2), (3), (&) tn §9.1 require:
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Mults = % nd o+ (k + %)n"’ + (l“l— - 20+ &+ 3/2)p + TP 31
i%n’ + (k +%)n2 + (%- 2k.)n+-11—2(2k- 7)2«%“3
Adds =300+ G+ 5/Bn" + G -2+ 6 -3/8p + TP Ly -
~ % n® + T%—p’
.i‘% n’ 4+ (k+ %)nz - (k - %)n ~-% nd .

For k=1 (i.e. one right hand side), iet us compare the work
required for the diagonal pivoting method (applicable to all non-singular
symmetric matrices) with that required for Cholesky's method (applicable

only to positive-definite matrices).

Cholesky Diagonal Pivoting
Exsact Lower Bound Uppexr Bound

1 3,3 2,1 1343248 1 342, 2.12 25
Mults s + zn + 30 6 1 + 2 0 + 3 " A + z 30 12

1 s 2 _ 1 1 3,13 2 > 1 5,3 2_3
Adds e " +n i vt g 2" 3" + 7 0 6 0
Root
Recipro- n 0 0
cals

Since the time required for a computer to perform a multiplication

is much longer than for an addition, the requirement of *’% n’ wmulti-

3 3

plications and between ™~ - n” and ~-% n® additions 1s very satisfac-

&

tory for symmetriv indefinite matrices,




If A 1s positive definite, then Cholesky's method is preferable

to the diagonal pivoting method. See aleo Appendix A (§A.1).

9.3 Forming (1) A = M D M"

Firat we decompose A into A =MD Ht .
(1)

Let us consider the reduced matrix A of order { .

The following chart shows ocur course of action.

find ufi) : Adds = { -~ 1

find uéi) . Adds = %4 (1-1)

///,ufi) >a uéi) ? Mults, Adds = 1
.'/
yes no
use 1x1 use 2x2
interchange interchange
Mults = 2
. calculate calculate det:{ ’
Mults = i-1: multipliers Adds 1
l
Mults, Adds}  form A(1—1) calculate ; Mults = 6(i-2),
. (1-1) ’ multipliers *~ Adds = 2(i-2)
2 /
(1-2) [ Mults, Adds
form A +{ < (1-1) (i-2)
i :=1-1 1 := 1-2




Thus for A(l) :

Mults = %~1(1+1) and Adds = 1% {f pivoc[i] =1 ,

Mults = 42 + 31 - 7 and Adds = (1-1)(% £41) 1f pivot[i] = 2 .

Recall that there are p 1X1 pivots and q = %-(n—p) 2x2 pivots.
For step (1):
Mmales = §Y L ¢ iy + TP G2 w30 - 7y

)
=W 2@+ [P G v a1+ -7

-1t am+ 1P a-n,

1 19 . 7 (2)
(9.3.1) = Iy '+ 5-n2 - ntyet 3 z i
1 2,12 1
> e " + 2 N + 30

Adds = 2(1) 1? + {(2) (1—1)(% 1+1)
1,3 1 1 1
‘Z( ’{(z i? +~2—1)+(ziz--2-i)}+

) 342,121 3 g2+ L gy -2
PP g +31 47 WD+ 3 A -7

2
T o3.2.,1 5 a1 )
) G1°+t31) -5 @p)+ ) z 1 (1-2)
is1
L3 .3 2 1 3 151 -
(9.3.2) =z’ + 20’ - T+ gty V1 1-2)
1 3,3 2_1
2 A n" + 8 n A n

Now let us bound 3 Z(Z) i and % 2(1) i (1-2) from above.

Y

2(2) i< % (p+2j) = % (n?-p?) + % (n-p) and

i=1

53
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n
PO 4 ey < ] 1 e eplat-ra+ St 43 - 2)
{=n-p+l

So we have the following upper bounds for (1):

‘ i 3,5 2 _ 5 _3.2_3
9.3.3) Hultsi6n +4n 30 -z P 7 P -

1 53,1 3, 1 3y o2 -1 (p2 1 2, 3
(9.3.4) Adds <pni+ Rt Grptg)ln - (piiptatgp t oy opo-

S.4 Solving (2), (3}, (4)

For (2) C = wla
1 1
Multu,Adds-(-z-n ~—n+~2<p)k.

(Note that = 0 {f pivot {1] = 2.)

Mi+1,1

For (3) Y = plc:
Mults = 3n - 2p , Adds = n - p .
For (4) X =M °y : .

Mults, Adds = (%m2 - n+':1).—p) K .

Total Work Required

Thus steps (1), (2), (3), (4) together require:

Mults = n3+(k+l)n2+(-1-171--2k)n+(k+%)p+32(2)i

2

?

Mults <

3 2 4 A
kDt G- k- p 7P

Mults > 2 0d + (k+3) n? + - 20 n .

1
6
i
6
1
6

3

3 5 3 -
n’ + (k + +(4 2k) n + (k 8)

p+ -i— {(l) i (1-2),

3 5 3 _ L o, d.n 2
n’ + (k + +(4 2k)n+12p +(8 a)p"'

L S

1
(Z" -
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9.6 Upper Bound on Mults

We would like a minimal upper bound on Mults that is independent
of p , where 0 < psn.

Let f(x) = (k - %)x - % x2 By elementary calculus,

I I Y 1 5 2
f(p) < £¢ 3 ) 17 (2% - 7)? . Thus Multe < ¢ n + (k + a) n? +

4 _ Yy oL 3,8 2 2 3 -
(3 2k) n + 12(..k 7) s +n 30 T {(wnen k = 1)

9.7 Upper Bound on Adds

Now we would also like a minimal upper bound on Adde that is inde-

pendent of p .

D U QU Y S S - L
Let g(x) 12 * + (8 4) x< + (b n 7 ® + k 12 ) x .

Since g'(x) >0 on [(0O,n] we have

3 1

) s(p)ig(n)ﬂﬁn—§n2+(k--{72-)n. Thus

Addsi}jn3+(k+-12-) nz—(k—%—)n
- % nd + % n? - %-n (where k = 1) .

Al A P e

it |
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Chapter 10 : Error Analysis for Diagonal Pivoting

10.1 Introduction

Let us attempt to sclve A x = b by the diagonal pivoting
method. If X, is the solution we obtain from the computer, we may
consider x. as the exact solution of the system (A + E) z = b .
As in 82.5, we are interested in showing that the elements of E are
small in comparison to the corresponding elements of A (Wilkinson,

1960, 1961, 1963, 1965). Such an analysis of E 18 called a back-

ward error analysis,

10.2 The Occurrences of Error

Suppose that we could perform the diagonal pivoting method in
exact arithmetic. In order to solve A x = b , we perform thc fol-
lowing steps (see §9.1):

(1) A=MD M (the decomposition)
-1

(2) ¢=M" b (the new right hand side)
(3) y= D_l c (solve the 1x1 and 2x2 systems)
(4) x = M-t y (recover the solution)

However, in finite precision arithmetic, we have error at each

step, Instead of decomposing A 1into M D Mt , we obtain M and D

such that M D Mt- A + F, Instead of calculating M-] b, D-1 <,

M ¢ y , we actually obtain ¢ = (M + Ml)-l b,y= (D+§ l.))_1 c,

x= M+ Nz)-t y for some perturbations Ml , 6D, M, respectively.

2
Thus we actually perform:




i

() A+F=nopM
(2) c = (M + Ml)_l b
3 y=0+6m e

(4) x = M+M) "y

10.3 The Error Matrix E
Thus we have b = (M + Ml) c = (M+ Ml)(D +6D)y
=M+ MDD+ n)(M+uz)t x = {Mnu‘+u1 (D + 6 D)(M+M2)t

+M[6D(M+M2)t+DM; )} x. But MDM = A +F , while

(A+E) x=b ., Hence
E=F +M (D+GD)(M+M2)t+M[6 D(M+M2)t+DM;]

1f we can bound the elements of F , M , D , Ml , M2 ,and & D ,
then we can bound the elements of E . We shall see that wmost of the

error lies in F , in other words, most of the error occurs when

obtaining the decomposition M D Mt of A.

10.4 Notation

In the foliowing sections, the symbol €,n will stand for any
numbers with Iel :'2~t . |nl < (1.06) 2-2t , where t 15 the num-
ber of binary digits in the computer. Each occurrence of € or n
in an equatior should be indexed, but we shall suppress these indices
for the sake of clarity.

Zl and XI shall denote the summation over those indices k ,

1 <k <n, with pivotik] = 1 and 2 respectively.

57



We shall write g(t) = 0 (2°%) f 1lm 2% g(t) 1is finite.

o

10.9 Summary of the Error Analysis

In the following sections we shall show:

0.5,y [Ff 2% < e 3.0/a] I u$¥ s 027 -1 Iy bk

for 1lj.and F=F,

t

(10.5.2) |g, | < |F | + €, where € < 2 (l+a) max u(k) n? x
i3 — 11} N 0

max (1/a%, 1/(1-a?)}
Also, for Qa = ao , we shall show:

10.5.3) e b 2% <570 00wl w316 T w) for 1> g
ij i'a L1 %0 =

(10.5.4) VEN < 27% max uék) (23.54)n2
X

n
where 0 | ie the one-norm: MEV = max § |

E |
y 11

In Chapters 11 and 12, we shail show for o = a4y ¢

(10.5.5) max |Fy | < (15.8)n 27" /A £(0) 1y (3.07) n0- 448
i.]

(10.5.6) VFd < (15.8)n* 2°° /u £(n) b, (3.07) 0446
(10.5.7) MEb < (23.56)n? 2°% Vn £(n) Mg (3-07)00'446 )

For Gaussian elimination with complete pivoting {(see §2.5):

(10.5.8) < (2.00n% 27" Vo £(n) uy , where LU =A+F .

For further vemarks, see §10.12 and §10.16.

58




10.6 The Decomposition for the Reduced Matrix A(r)
Let A(r) be the reduced matrix of order r , 1 <r < mn . Let

s = plvot[r] (see §9.,1). Thusa e =1 or 2 .
Let Aér) be the matrix resulting from deleting the firet s
’ rows and columns from A(r)
[P;r) C:r) t
let A(r) - s, Where P(r) 18 s8%8 .
l @ |, s
C A
| 8
C:r) is (r-s)xs . We shall use Pir) as the sxs pivot.
Let Mét) be the (r-s)xs matrix resulting from calculating
-1
Cér) (P:r)) in finite precision. Let Gér) be the (r-s)xs
error matrix : Oir) = “ér) - Cir) Pér)-l . Let A(r—s) be the

reduced matrix of order r-s resulting frow calculating A

r-s)

8 8
let G( be the

G(r—s) - A(r-s) _ Afr) . Hér) Cir)t .

in finite precision. (r-8)x(r-s)

gur M0 (Mt (D) [(M(r) -0y plx)ye
8 s 8 ] 8 -]

n(E) plr) ()e M(r) p(®) O(r)t )
v s 8 8 8 8 s
Hence A(r) + pl8) _ M(r) P(r) w(oe | A(r-s) , vhere
S - 8 8

p(T=8) L glem8) Mé’) Pér) o{t .

10.7 The Error Matrix F for the Decomposition

From §10.6, we have A+ F = M D Mt s, where F = F*  and for

1>3: F =G, +(MDOt)“,wherefor 1> 9

i3 3

error matrix :

-}

39

(r) _ M(r) C(r)t
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G - i E(k) with

13 b
(.
(n-k) - -
Gi-k,j-k if pivot[n-k+l] = 1
(0 _ﬁ (n-k-1) a1l
Cij Gi-k~1,j—k—l 1f pivot[n-k+l1]} 2,
t_ 0 if pivot[n-k+l] = 0
( ek, 1f pivot{n-k+l] = 1
1 3-k, 1
. - (n-k-1) k21l =
and for j > k : Ojk i (62 )j-k—l,l if pivotn-k+l]} 2
A (n—k) — [
L ©, )j-k—l,Z if pivot[n-k+l] = 0
10.8 The Ervor Matrices Ml , 6 D, Hz

M + Ml) ¢=b . From §10.6,

(Min_j))i—j,l if pivot[n j+1] = 1
-j-1)
Mij = (Mz(n 1 )1_‘1_]_’1 if pivot{n-j+l] = 2
M (“'1)) if pivot[n-j+1) = 0
2 1-3-1,2 P ~
for 1 > j , with "j+l,j = 0 4f pivot{n-j+1] = 2 ,
while ij = 1 for every j , and Mij =0 for j>1.
Thus (Hl)ij =0 for 3 >4 and (Hl)j+1,j =0 1if

pivot(n-j+1] = 2 .
(D +8 D)y =c . From §10.6, D 1is a block diagonal matrix with

blocks of order 1 and 2. The blocks are the pivots Pér) in §10.6,




A s A o oem o= - -

N

6l

s = pivot(r) . Also, & D has the same block structure as D .

, has the same structure as M1 .

i MM x ey LM

10.9 Floating Point Error Analyseis
N Since most computers now perform calculations in floatirng point
arithmetic rather than in fixed point (see Wilkinson, 1965, pp. 110-
188), we shall give an error analysis only in floating point.
Then, from Wilkinson (1965), pp. 11l4-117, we have 2z = fR(x * y) =
(x * y) (1L +¢) , where |gl §_2~t , t 18 the number of binary digits
used by the computer, and * 1is any arithmetic operation (+, -, X, ) .
Further, we shall assuwe that the computer can accumulate inner-
products in floating point arithmetic. Then |[fR (xl Yyt tx, yn) -
n
(xl Yy + ...+ x yn)l i_izl 11Y1 x, yi| s where
3 -2t
! Iyil <7 (1.06) 2 As in §10.4, we shall assume 1N 1s any number
: sucin that |n| < (1.06) Z-Zt and we shall suppress indices. From
§10.4, we may write |n| 5_2-t 0] (Z-t)
10.10 Floating Point Analysis for F
14 L]
i (x) (r) (r)
i; Consider A . IAij |§_u0 Let 1> 3
$
: ! Case 1: s = pivot[r] = 1 .
(r) L(r) (r) - (r) _ () _ (¥)
Ml , 01 , and Cl are (r-1)x1 . P8 A11 My
. (r-1) (r) ¢) (r)
= - + + .
So Alj [(Al )1j (Ml )1 (cy )j (1 +¢€)] (L +¢e)

TR

T el B
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g {0y o o (M{”)1 (c{r)) e (2 +¢€) .

S Eyy 14 3
l(Air))ij| = |A£:i,j+1|5-“ér) . |(c£‘))J| = IA;:;,1| A “ér) .
\ Thus lai?’l)l <27t ué') {1+ (2+27% lui")li }.
W, <A AP
-V p{‘)‘l)J (1 +¢€). So (oi"))j - el Pi’)—l)j .
l(M:r))j Pl(r)l f,uét) a+2°5 . l(cir} P§r)-1)j| . |A§:i,1 Alir)~1| <
u{ i < 1/a

So |(o£’))j|5_z“‘/a and |(u{‘))j| <@+ 2%/ . Thus

(10.10.1) |E§;_1)l <270l w20+ 07O, and

(10.10.2) |(Mf‘) p{t) Oﬁr)t)ijl <uf? a+2h 7% -

1 0
uér) 27t [1/a + 0275 .
Case 2: s = pivot{r] = 2 .
(r) (r)
A A
Mg, 057, and o{?) are (r-2%2 . ) -
(r) (r)
A Aj2
(r)?

2 2
and |det Pgr)l « (0 3uér) - Uit) > (1 -a?

So A(r'z) = {((Aér))i 1+e)] (1 +¢) -

(r) (r)
14 - My Dy (O

3 i1




L

€3

2 32 (1 +¢) Y(1 +€) ., From §10.6, we have

(x-2) _ (r) = D) (r) 3 _
Gy € Wy )y s My )y (6 0y TA ) - 1)
(o) (r) N2
Sy Dy, €, A vt -1)
(r=2) ~t  (r) -t (r)
(10.10.3) lclj | < 2 uy o 1+ 3+ 0@ )] |(M2 )11| +

-t (r-1)
(2+27°) lo," 7,1 )

A(r) A(r) (1 +¢) - A(E) A(r) 1+ €)
(r) il 22 i2 21
Now (M2 )11 ={ ORRO) o7 ] A +¢€) .
A22 All 1 +¢) - Azl 1 +¢)

(r) () () \(r) ]+

(r) ,(r) (r)? (r) -
Thus [A A - A ] (“2 )11 [Ail 22 12 21

22 1 21

(r) ,(r) _ (r) ,(r) (r)? (r) ,(r)
Ail A22 € (2 +¢) - “12 A21 € (2+¢) + A21 € - A22 All € .

From §10.5,

- = 2 - 2 _ R
I(Ogr))ill < luér) (uét) + u{r)) e+ 27N+ uér) 27t ufr) 2750t

- _ _ 2
p(T) 97t (a4 27 27 0T 1wty -t .
0 0 2 -t 1+a
_<- (r) _ (r) + (1-(!2) '(r)T f_ {l‘__q 2 + 2 + 1+(1 }
Uo Ul l—o
But (1+a®)/(l +a) <1 since 0 <a <1 . Thus we have

(10.20.6) 1) ] < 27 (370 - o) + 02™)
Similarly, we obtain

(10.10.5) }(og‘))12| <27V (370 - ) +0@™H) .




From §10.6, we recall: Mgr) - Cgr) P;r)-l + O;t) . But

(r)

@y end? Wl e wn® cva-w

(10.10.6) [(c;"" (p,

Thus from (10.10.4) - (10.10.6), we have for j = 1,2 :

(10.10.7) |(M§'))ij| <+ 27 342780 -q) .

From (10.10.3) and (10.10.7), we conclude:

(10.10.8) |G§;‘2)| <2t uér) {1+5/Q -a)+0@5H .

low we need to bound (Mér) Pgr) Oér)t) From 610.6, we

iy

.on(n) L) _ L (x) (r) ,(xr)
recall: M2 Pz L2 + 02 P2 .

From (10.10.4), (10.10,5), and 810.6, we have

t

(10.10.9) I(Mé‘) pé‘))ijl <pd a2t B -+ 0@,
since u;r) <@ uér) .

From {10.10.4), (10.10.5), and (10.10.9), we conclude:

(r) (r) (r)t -t () ,-t
(10.10.10) |(n2 P70 0, )ijl <{3+002 5} 2 Mo 2 /L -a) .

10.11 Summary of Floating Point Analysis for F

From §10.7, (10.19.8), and (10.10.10) we have for {1 > { :

i t -t 1 (k)
(10.11.1) lGij' 25 < [1+ 2/a+0(27)) zi Mot

’

(1+5/(1-a)+ 0@ ") ]} uék)

(k)
o 7

(10.11.2) |M D o‘)ijl 2 < [1/a + 0275 I

[6/41 = o) + 0(2™%y) Ty ul® .




i o vy

From (10.11.1) and (10.11.2), we conclude for 1 > }

(k)

o 1

(10.11.3) |F,| 2" < [+ 3/a+ 021 I} v

(1+ 1/ -a) + 0@ 5 Iy w0
We shall now assme tha. the firvst 0(2—t) term {n (10.11,3)
I8 bounded by 0.01 (which 13 true for t > 8 for all a ) and
that the second O(Z—t) term in (10.11.3) is bounded by 0.02 (which

{s true for t > 14 when a = oy = (1 + /17/8)).

Under these assumptions, we have:

vk
(0.11.4) || 2 < [1+ @.00/a) [} ué )
" k
(1 + (11.02)/Q1 - @)} [} ué ),
while for a = uo ,\we have:

(10.11.5) |Fij| 2" < 5.71 ]} uék) +3.16 Y uék’

10.12 Comments on the Bound for F

From (10.11.4), (10.11.5), and §10.3, we see that we have a good

(k)
Yo

bound on F (and hence on E ) only if the maximal elements in

(k)

the reduced matrices . do not grow too large.

From Corollary 3 of §3.7, we have for a = ao :

uék) < (2_57)n-k n Thus (10.11.5) does not automatically give a

0"
good bound on F {f n > t ., At the present time, most computers

have t % S0 . llence (10.11.5) cannot guarantee a good bound on F

for systems of order > 50 .
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According to Wilkinson (1965, p. 215), if L U = A + F , then
max |Fij| < (2.01) n 27" max uék) for Gaussian elimination, where
1,3

()

k) . .n
nax “é ) <2 Mo for partial pivoting, while max U

< V/n £(n) Mo

for complete pivoting.

In Chapter 11, we shall show that for the diagonal pivoting method

with 0 < a < 1, we have:

max uék) < Vo £(n) Mo c(a) h(n,a)

k
In Chapter 12, we shall show that for o = ao :
clag) hn,ap) < 3.07 (-1 for m> 2.
Then from (10.11.5) we have for a = ao :
ni)a;( lFij! < 2% /o £(n) Mg (3.07)n°'“‘6 {5.71p + 31.6(n-p)/2] ,
’

where p 1is the number of 1x1 pivots used. So

max |Fy ] < 27 /R £ ug (3.07)0°°%*6 (15.8n - 10.09p]
i)j '
<1580 278 vm £ g Goona
0.446
which is within a factor 7.9(3.07)n of the bound for max |F

|
1,9 4

for Gaussian elimination with complete pivoting.

10.13 Floating Point Analysis for 3 D

The blocks of D are of order 1 or 2 .,

(a) Surpose [D11

We want to solve D11 Y "y but we obtain (D11 + (6 D)“)y1 =cy

due to the finite precision; pivot[n-i+1] = 1 and lDiil = u;n_i+1)

] 1is a block of order 1. Then so is [($ D)iil

3
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Thus v, - (ci/Dii)(l +€) and (¢ D)11 - - D11 € .
-t (n-i+l) (n-1+1)
so |(8 D)ii| <2 |D11| . But |Dii| - < Mg
. -t (n=i+l)
Thus | (8 D)iil <27y
, D D
(b) Suppose 11 141,14 - Pén‘i+1) is a block of order
Div1,1 P, in
2. Then plvot(n-i+1] = 2 and uin-1+1) <a uén—i+l)
(n-k+1) _ Y
t v (D, Diypaen LM = Dpy 1+n)] A+¢e),
-t -t -t
where n =2  0(2 ) . Since le |< 277, we have
- - - - - 2
I\)(n k+1) - det Pgn 1+1)l < 2 t [1 + 02 t)] a+ 0.2) uén 1+1) .
{n-k+1)
Now Y41 [ci+1 Du a+n < D1+1,i A+ +e)/(rv )

(n-k+1)
and y; = [eg Dyyy gy (1) —cypy Dy g (M (1+€)/ 2V )

since le| <27%, Inl <27t 02" , and uin-1+1) <a uén-i+1)

after much manipulaticon, we have:

r
1 vy, ORI Y @ !
< 278 1+ 029 u(()n—j.+1)
TCRO NS B IR ey LI
10.14 Floating Point for !1 and !2

. -
From §10.2, (M +M)c = b and (4 + Mz)t x=y.




From Wilkingon (1965, pp. 247-249), we have:

torpy 1 o e 78 v 0@ gl =
fox 1 <3,
[0 i e gl <3 270+ 0@ - 241 - 1) Iy,
for 1 >}
From §10.10, Hii =1 and for i > j§
Iy, | < max (1/a, 1/(1-0)} (1 + 02 9 .

So for 1 > j

1
10.14.1) e, | 03) j|

et 4 -t
and JM) ] Tl <2 11+ 02 )

10.15 Floating Point Bound for E

From §§10.3, 10.11, 10.13, and 10.14, wc could express

terms of F and the elements of M, D, M

i} 1’

expression is very complicated.

n
fal = max Z
3 1=1

Let us define |a where A is

1!

usually called the one-norm.) Clearly, |Aij| i,'Al

From §10.3, we now have

(10.15.1) |E jl + € , where

MENLA

e = I 1 UD + 6D0 Neuw)h+ Bk [lepl Bun)l+ Db Bl ] .

® max{1/a,1/(1-a)}(1+0(2 "

MZ’ ard 6 D .

nxn .

Y13(n-2+1i-§)/2

Eij in

But this

(This i1s
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ék) From §10.13,

ipl < (1L + a) max y
k

Bsol < 278 (1 + o) max u{® 1+ 0027 .
k

t

From 510.10, Wb, I®1 < 1 4 (n-1) max {1/a, 1/Q1-0)} {1+ 0(2™D)] .

Let us assume 0(2°%) (1 + max {1/a, 1(1-a)} 3(n + 2)3 = 02 %) ,

i.e. let us assume n? 2-t << 1 ., Then

bl Bl < 278 1+ 0@™).

Now we can bound € . Let 8 =1+ (n-1) max {l/a, 1/(1-a)} .

(10.15.2) € < 2% (1 + @) max uik) B(2 +8) [1+ 0025 .
k

For a = ao , we have B < 2.781n , 80

(10.15.3) €< 27" max (¥ (7.730)n% [1+ 027H)] .

k

From (i0.11.4), (10.15.1), and (10.15.2) we conclude:

k)

(k)
0 0

0.25.4) Iz, ] 2 < (1 + 3.0/a) [ ug + 00+ 11.02/0)) fy

§’3u+en1+ou*n

+ (3 + o) max u
k

From £1G.11,5). (10.15,1), and (10.15.3) we conclude for
a = oy

- \
(10.15.5) |515| < 27% max uék' {15.80m + 7.74 n?;
' k

Since 'Fl :_IFI + ¢, from (16.11.5) and (10.15.3):

(10.15.6) el < (23.54)n% 27" msx uék)

k

s s

e ek s 18 5



10.16 Comments on the Bound for E

—— ——— ——— =9

From §10.12 and §10.15, we need to bound the uék) in order to

have a good bound or E .

In Chapter 11 we shall show that max uék) < /n £(n) Mo c(u) hin,a)
k
for the diagonal pivoting method for 0 < a < 1 . In Chapter 12 we
ghall show that c(uo) h(n,ao) < 3.07(“-1)0'“‘6 . Then we would have
el < (23.56)n? 27° /4 £(n) Mo (3.67)(n-1)0:4%0

For Gaussian elimination, fin order to solve A x = b , in finite
precision we actually perform:

(1) LU =A<+F

(2) c= (L+8L) T

(3) x= U+ 6wt e.

From Wilkinson (1965, p. 215, pp. 248-252), we have (c¢f. §2.5):

max |F | < 2.0ln 27" max uék) and
1,; 4 x
el < 2,017 278 max u(®) (14 002"

3

For complete pivoting, max uék) < /n f(n) o (Wilkinsun, 1961).

Thus our bound on YE! for diagonal pivoting differs by a factor

36(1\-1)0'“66 from the bound on UEl for Gsussian elimination with

complete pivoting.
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Chapter 11 : An A Posteriori Bound on Element

Growth for Q0 <o <1

1.1 Introduction

We saw In Chapter 10 that the bouna ¢n the elements of the error
watrix depends on the maximum of the elements of the reduced matrices.

{n)

let A = A be the origins’ symuetric matrix of order n wirh

(k)

det A£ 0., Let A be the reduced matrix of orcer &k .

We saw in §8.4 that max ]Ai%)l <(2.5’7)n-k max |A
W - i

shall show 1in §811.2-11.7 that we cau get a much better bound by the
use of Wilkinson's techniques for Gaussian elimination with complete
pivoting (Wilkinson, 1961; pp. 781-285).

His proof depended on the fact that the pivots in CGaussian eli-
mination with complete pivoting were maximal elements in the veduced
matrices. Our plvois are rot necessarily maximal elements, but they
are closely related to the ﬁaximal elements in the veduced matrices.

We shall assume that we use strategy Su (§5.7) for any « ,
(k) z_uék)z - uﬁk)z for all A(k)

0 <y <1, and that Vv (see

Lemma 4, 85.5). In particular, this lower bound holds for thne strate-

gles in §6.1, §6.4, «ud §B.1.

11.2 The Pivots

(k)

Let A be the reduced matrix of order k .
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Lat ugk) = Max IA

i,

K
)| and u{ ) - max |a (k)l

let us assume that, whenever we shall use a 2x2, interchanges have

2 2 2
engsured that V( IA§:) ég) (k) i 2 Uék) fk) ' ®

(In parcicular, this assumption holds for the strategies in
§56.1-6.2, §96.4-6.5, and §§8.1-8.2.)

From strategy Sa {§5.7) and §9.1, we recall:
(’1 iE uik) <@ uk‘) , Ll.e. 1f A uses a 1x1 pivot

pivot{k] = 4 2 if uik) < ¢ ﬂak) , 1.e. 1f A(k) uses a 2x2 pivot

3

e
L‘O if U§k+l) <a uék+l) i.e. 1if A\k+1) uses a 2x2 pivort.

let us now define

- uik) if pivot[k)] = 1
l
P~ % v(k) if pivor{k] = 2
L /vck+1j it pivotlk] = O
The will be called pivots.

Py
From the decomposition A =MD M® we see that Idet Al = Py.--P

and |det A(k)l = py---p » vince det M =1 .

11.3 Kadamard's Inequality

By Hadamard's Inequality (Ganatmacher, pp. 253-254),

n n
(11.3.1) |det a] < {1 7§ Aij}llz < (n pén)z)“/z - 3 ué“))“ .

tel §a1
since u\n) =1~ max 1A . Also
0 e

(11.3.2) Jdet A < K u(‘) k
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11.4 Bounding det A(k)

(1) If pivot{k] = 1: ufk) >a uék) . So uék) < pk/a .

(11.4.1) p; ... p = [det A(")l < (¥ uék))k < ey -/ITE/m)k .

(2) 1If pivotik] = 2 : u{k) <qQ uék) . 1If we assume

2 2
v(k) > uék) - u{k) for all A(k) » then v(k) > (1 - a?) uék) .

2
thus 1l < v -6t = p2a -6t

(11.4.2) p; ... p = |det A(k)l < (p AT =ah) )k .

11.5 Fundamental Inequality

From §11.4 (and later in §11.5), we are led to the following:

Definition:
1/a? if pivot[k] = 1
(11.5.1) B, = 1/ (1-a?) 1f pivotik] = 2 .

1 k+l (141/k
= [¥=2]

¥ 1 if pivot(k] = O

From (11.4.1) and (11.4.2) we have:
k
(11.5.2) Py - By f_(JE E; Pk) if pivotlk] # 0, 1 £ k < n .
We would like to have a similar equation for pivot{k] = 0 for

ouv anaiysis in §11.6.

1f pivotik] = 0, cthen pivot{k+l] = 2 . By (11.5.2),
p < (YD) B P )k+l where B - 1/(1 ~ o) and
Pp oo Py Pal = k+1 Pr+1 » k+1

1 k+l (141/k
Py = P4y - Since B o= [770) by (11.5.1),




Py +or B < (1) 8 192k 0 (B p 0% L Thue

(11.5.3) Py »++ P < (/& Ek pk)k for all k , 1 < k <n .

11.6 Bounding Pivot Growth

Define q = log P - From (11.5.3),
k-1

11.6.1) ] q < (k1) q + %-k log (k B,) .
121

Since Idet A(n)l = p1 e pn , we have:

(n) 7
(11.6.2) log [det A" | = ] q, .

i
i=]
Dividing (1l1.6.1) by k(k-1) for 2 < k < n-l1 and (11.6.2) by n-1
and adding we have:
2 -3 - -

q, + q2/- + q3/3 + .. qn_zl(n 2) + qn_ll(n 1) + qn/(n 1)

1

n-1
< === log |det A(")I +% T log (k Bk)l/(k—l)
k=2

n-1

+ q2/2 + q3/3 + ... + qn_lf(n-l) ,

ol 1 1
after observing that rzk T "%l - oI

n-1
(11.6.3) q +q /(1) <3log T ()Y &V L log Jaer 4™ .
k=2

From (11.5.3), Idet A(n)l < (vn En pn)n . We define

r
(11.6.4) f(r) ={( T kl/(k'l)} 1/2
k=2

} ¢
(11.6.5) h(r,a) ={ 1 g Y/ (k-1))l/2
k=2 &
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From (11.6.3) we now have
fnn : - - —n__ -
q; *+q. /{n-1) < log f(n-1) + log h(n-1,a) + Ta-1) lo8 (nB) +nq/(n1)
With simple manipulation we have

1
q -9, < log f(n-1) + 7o) log n + log h(n-1,a)

1 1
* IED log Bn + 7 log (n Bn)

= log £(n) + log h(n,a} + %-log (n Bn)

Thus we conclude

(11.6.6) p,/p < v/n £(n) /E;h(n,a) .
Similarly, we have for 1 < k < n:

(11.6.7) pk/pn <vn-k+1f(m-%k+1) ’En-k+l hin - k + 1,a)

< /n £(n) {En-k+1 h(n,a)
(11.6.6) and (11.6.7) hold for all a , 0 < @ < 1 , under strategy

2 2
Sy (§5.7) provided that ML Z_uék) - uik) for all A(k) (§5.5).

We now have a bound on pivot growth. But we are interested in

bounding element growth (§11.1). If A finishes with a 2x2 pilvot we

are interested in bounding uéz)

(1)
o

, while if A finishes with a 1x1 pivet,

we must bound u

11.7 Boui.din, Flement Growth

We shall now express Py» Py /E; P and /Bn_l P, in terms of

uél). uéZ), and ué“)

o s
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(k) (n) (n) (n)
Let A=A » Mg = Hg L) » VeV

¥y 1f pivot(n] = 1

Since pivot(n] ¢ 0, P, " , and
/v if pivot[n] = 2

1/a? if pivotin] = 1

Bn
1/(1 - a?) 1if pivet(n] = 2

But always. If pivot[n] = 2, then Y <auy and

Mo

My <
(by §5.5) /v < /hé + ui < + a’ Mo+ Thus

Mo if pivot[n] = 1
Py < ’
/1T ¥a? Mo if pivot(n) = 2
1/a? if pivot[n-1] = 1
Now B - 1/(1 - a?) if pivot(n-1)] = 2 .

%:%E (n Sn)l/(n‘l) if pivot[n-1]} = 0

Let us define:
1
(11.7.1) m(a) = max {; , YA/ T }.

Thus we have:
(11.7.2) Bap, <)y, and

m{a) Mo if pivot[n] = 1
(11.7.3) JEn_l P

<
n —

(vn.Bn)l/(“'l)vn7Zn-I) JI+a§7?I-a’)uoif pivotini = 2

From (11.6.4) and (11.6.5), we have

(11.7.4) (/a B n)“(“‘l) £(a=1) h(n-1,0) = £(n) h(n-1,a) .
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We have two cases (511.6) as to whether:
(a) the last pivot is 1x1, 1.e, pivet(l] = 1 ,

(b) the last pivot is 2x2, {.e. pivot[2] = 2 .

Case (a) : Let pivot(l] = 1 . Then P - u{l) - uél) .

From (11.6.6) and (11.7.2) we have

)y

(11.7.5) My

p, < /n £(n) gy m(@) h(n,a) .

Case (b) : Let pivot(2] = 2 . Then P, " /vlz! and

) (2) , (@2 _ u(2)2
) 1l

2)
M el Z ¥y

Since we have assumed V R

)t

\)(2) _>_ (1 - u2) uo

Hence

11.7.6) u{? <p TTa .

From (11.6.7) with k = 2 and from (11.7.6) we have

11.7.7 42 < /AT £(n-D) h(n-l,0) B p /YT G2

How we have two cases as to whether the first pivot is (1) 1x1 ,
or (11) 2x2.

(1) Let pivot[n] = 1 . From (11.7.3) and (11.7.),
uéz) < VT £(n-1) h(n-1,a) m(a) u /YT =a® .
But £(n-1) < £f(n) and h(n-1,a) < h(n,a) . Thus
(11.7.8) uéZ)lg /n £(n) 4, wla) h(n,a)/vVI = a? .
(11) Let pivot[n] = 2 . From (11.7.3), (11.7.4), and (11.7.7),

uéz) i.J; f (n) Mo h(n,a) /T + a2/ - a?) .
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But VI + a?/(L - a?) < m(a)//T - a* from (11.7,1).
a1.7.9)  u$? < &) uy @) bn,)/ T .

Let us now define:

1 if pivot(l] = 1

(11.7.10) c(a) = m(z) x

1//1T = a? 1f pivot(2] = 2

where w(a) = max {1/a, YQ+a2)/ (1-a?) } .

Then we couclude for 0 < a <1 ;

|If pivot[l] = 1 : uél)\t

1f pivot[2] = 2 : uéz)J -

(11.7.11)

Similarly, we have for each reduced marrix A

(11.7.12) uék) < ATEE £(n - Kk g e(k,0) hin -
1

where j§ = pilvot{k]) , c(k,a) = m(a) x
1//1 - a?

and 0 <a <1,

Hence, for all Ak

, Wwe have for 0 <a < 1
(k)

(11.7.13) Hy

< /n f(n) Mg ¢{@) hin,a) .

11.8 Comnents on the Bound

The bound in (11.7.13) holds under strategy Sa

() . () “(k)’
1

under the assumption Vv 2 ¥g for all

(k)

78

Hence

< /n £(n) Hg c(@) h(n,a) .

k+i, a) ,

if § =1

1f § =2

» 0<a <1, and

(k)

A In parti-

cular, (11.7.13) holds for the unequilibrated diagonal pivoting stra-

tegy (8§8.1-8.2), the complete strategy (8§6.1-6.3), and the partial
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equilibraced wtrategy (596.4-6.5). (For the partial equilibrated stra-

tegy, we assume that, given & reduced matrix A(k) with uék) = max |A

1,3
we equilibrated A(k) 80 that the maximal element in absolute value in
each row is uék) )

Wilkinson (1961) obtains vn f(n) uo ar the bound on the elements

in the reduced matrices for soiving A x =10 , Hg = max IA
1,]

Gaussian elimination with couplete pilvoting. We have the extra factor

1:]' s by

c¢{a) h(n,a) since our pivots are not necesgarily maximal elements of
the reduced matrices.
We call the bounds in (11.7.11) - (11.7.13) a posteriori, since

we cannot calculate the Bk terms of h(n,a) until we know the rosi-

tion of the blocks of order 1 and 2 in D for the decomposition
A=MDM" . In Chapter 12, we shall give a bound on c(a) h(n,a) ,
independent of the structure of D , for the value a = ao =

Q + /I7)/8 (85.7).

11.9 Smaller Bound on Pivot Growth

If H 1is an nXn positive-definite Hermitian matrix and xmin

is the minimum eigenvalue of A , then (Shisha, p. 173):

n
(11.8.1) det H< N H_ -T2 ( § w12
i1 y>1>1
If A is an nxn non-singular real symmetric matrix and X 1is
the wini{mum of the absolute values of the eigenvalues of A , then,

setting H = A" A in the above, we have

k)
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n
(11.8.2) |det a]* < It (Z A,) L) IA '
1=1 =1 n>§>1>1 "

where A, 1is the jth column of A .

]

Then |det A|? < (n ug) €(A) , where

(11.8.3) €(A) = 1 - r2(0-2) [ ) |A |:| /(n “o .
n>§>i>1

Using an analysis similar to that in §§11.2-11.7, we obtain:
[-If pivot{l] = 1 : uél)

(11.8.4) - </ £(n) py cl@) h(n,a) T(A) ,
1\If plvoe(2] = 2 : (2)

Mo

1
i S, . N
where T(A)? = €(A)n-1 n e(A(f))t(r-l) and
r=2

e@(®) a1 - 320D [Z |ag" A;”"] /e uF where A

is the reduced matrix of order r (A = A(n)) R Ar is the minimum of
(r) (r)
the absolute values of the eigenvalues of A , and AJ is the
jth column of A(r) .
I dec A# O, then [A | >0 for each A e AU g

not ladamard (see §12.6), then c(A(r)) <1. 1If A(r) is Hadamard,

() (r-1} {11 not be Hadamard

then A will use a 1x1 pivot and A
(see Appendix A).

Thus T(A) <1 1f det A ¢ O . Hence (11.8.4) gives a lower bound
than does (11.7.11), but (11.8.4) 18 so complicated we are unable to use

it to advantage, and we present it merely for its academic interest.
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Similarly, for Gausgian elimination with complete pivoting, we
csn obtain vVn £(a) Wy T(A) as the bound on the elements in all the

reduced matrices when solving A x =b , Uy = max |A15| , det A ¢ 0,
1,3

Lf we replace the Ar in T(A) by Iorl , the singular value oL

: of A(r) of minimum modulus.




82

Chapter 12 : An A Priori "ound on Element Growth

for a=aj = (1 +/I7)/8

12.1 Introduction
In (11.7.13) we obtained vn f(n) by c(a) h(n,a) as a bound on
the element growth in the reduced matrices, for any a with 0 <a <1,
From (11.5.1), (11.6.4), (11.6.5), (11.7.1), and (11.7.10) we
recall:
( 1/ & if pivotlk] = 1
8, = \ Q- a?) if pivot(k] = 2 ,

1 k+l (1+1/k
Y ( v=2)

1=
T if pivot(k] =0

?

n n .
ORI S S R YO L T
k=2 kw2

1 if pivot(l] = 1

n(a) = wax {lq ——lq—} and c(a) = ola)
ot ? l-a ’ *
1//T - a? 1f pivot (2] = 2
The term c(a) h(n,a) arose from the fact that our pivots are not

necessarily the maximal elements of the reduced matrices, but can be
expressed as multiples (involving «a) of such maximal elements. The
bound in (11.7.13) 1s a posteriori since we cannot calculate
c(a) h(n,a) until we know the pivot selection, i.e. until we know the

povition of the blocks of order ! and 2 ‘n the block diagonal metrix D

for our decomposition A = M D Mt for a given value of a ,

0<ac<1l.
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We would 1ike an a priori bound on the element growth, i.e. a
bound independent of the selection of a 1x1 or a 2xI pivot at each
stage.

We would alse like the a priori bound to hold for all a ,

0 <a< 1. But no such bound exists, as we shall now show.

let p be the number of 1x1 pivots for the deccmprsition (8§9.1),

i.e. there are p blocks of order 1 in D a&bove. If p=n (e.g.

for a positive definite matrix, see Appendix A), then

1/ (k-1)

n
h(n,a) = T (1/a) +® a8 a0+, Jf p =0 (see §6.3), then

k=2

n
hn,e) > 1 T =a) D s e 45 a1,
k=2

Thus we shall give cu a priori bound for element growth only for

the value a = @, = a1+ AANIE (85.7).

12.2 Lower Bound on c{a) h(n,a) for 0 < a <1

We shall now find a lower bound on c(a) h(n,u) fcr ali ¢ ,
0<a <1, in order to show that the upoer bound for a = % that
we obtain in §12.4 is a reasonable bound, i.e. that some cther choice
of a would not provide us with a much better upper bound vn
c(a) hin,a) .

Since wmin c{(x) h(n,a) > win c(a) X win h(n,n) , we need
0<a<l O<a<l 0<a<l

only find lower bounds for the latter two minima.

Lemma 1: wmin c(a) > 2.029 .
O<a<l
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Proof: nmin c(a) = ¢c(v/Z - 1) = ¢£-+ 3//2 > 2,029 . q.e.d.
O<avl

We shall later need the following:

atl i LY
Lemma 2: 2 ——<log(—4)<z—fot n>m>1.
leoms K u K -
kem+l k=m

rroof : ‘ 1okt 1
Proof: By elementary calculus, Py < !k " dx < Pl Thus

n+l

i n+l 1
< f ~ dx log ¢ e } <

KFrl m

x|

n
7 for nm,m > 1. q.e.d.
-0

3Mﬁ

Mow we caun find a lower bound for nin h(n,u).
G<a<l

Leema 3: min hin,a) > nloS 2 > nO'3465

O<a<l !
n
Prook: Let w{n) = z 1/(k~1) . If p = n , then
k=2
haa) = (17a)"™ . 16 p=c . then h(n@) = /YT = )™ ),
w2 | 1/(23-2)
vhere t(n) = ]l [(EZL“ ) f—glz )1/(23—1)] > 1.
o1 31 i-a -

Thus h(n,a) > b(a)w(“) , where bla) = max {1l/a, 1//1T < a*} . But

min h(@) = V2 , and is attained by w = 1//2 . From Lemma 2,
<<y

iy .
w(n) > log(n) . Ecnce min h(n.a) > (/5)1°3 n . n108 V2 > nb'3465

O<n<d g.e.d.

From Lemmas 1 and 3 we obtain a lower bLourd for c(a) h(n,a)

for D <a <1,

Theozem 11 min cla) a(n,a) > (2.020)n" 246

O<a<i
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In 512.4 we ehall show that c(ao) h(n,ao) < 3.07(n-—1)0'M6 .

Thus our choice of O = e, (65.7) will provide us with aa upper bound

an c(o.o) h(n,ao) which does mnot differ much from the minimum of

c(a) a(n,a) for 0<a<1l.

12.3 Remarks on an Upper Bound for h(n,a)

We cannot evaluare the Bk until ve know the pivotal selection,
but if we could bound all the Bk independent of the pivotal selection,

then we can obtain an upper bound.

Theorem 2: If B, < ¢ for all k2> r , where ¢c>0 and r >3

is independent of n, then for 0 < a <1 :

hin,a)/h{r-1,x3) < Y(u-].)lo8 e , where Yy = (r—2)"3‘°g e
? n-1
Proof: From Lemma 2 of §12.2, z 1/(k-1) < log (—:5 ) .
k=r>3 r
n ‘1—108 ( ozl
- a2 -
Thue h{n,a)/h(r-1l,a) < {n cI/(K 1)} 12 e 2 r-2
k=1
log-v log x . -
But x =y for x,vy>0. q.e.d.

This shows that if we can bound Bk independent of the pivotal
strategy for k > r and if we can coneider the worst possible cases
of pivot selection for k = 2,...,r-1 and bound h(r-1,a) , then we
have a bound for h(n,a) . (In order to consider the cases for
2 <k < r-1 , we aust have r reasonably small.)

In §12.4 we shail do this for « = aq » and we shail have r = 5 .
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12.4

An A Priori Bound for & = a, = a +v17)/8

For
a= oy s

(12.2.1)

Now we shall show that for a = Qg s

1x1 pivots for

pivot{k] .

Lemma 4: For a = ao

1/ (k-1)
By

Proof:

Bk+1

1/ (k-1)
B, B

-1/ - a?) and Bkséi

a =0, , max (1/a3 YO+ e}/ ="ay)) = i/a, . Thus, for

1 if pivot(l] = 1
C(ao)- d(ao)/a0 , where d(a) =
L‘llJi - a? 1f pivoty2] = 2

Bi/(k—l) is maximal for

k > 5 . Recall §9.1 or 811.2 for the definition of

and k > 5 , if pivot{k] = 0 , then

1/k

1/(k-1) + 1/k
k+l :

8 < (llaé)

from (11.5.1), 4f pivot{k) = O , then for 0 < < 1 ,

1+1/k

k+1 ..
—2] . Hence

1’

1/k
k+1

1/(k-1) + 1/k k+1, k 2k

< (1/a?) iff (k+1l) /k < a?(1/a® - 1)

1ff (k+l) log (k+l) - k log k < log a? + 2 k log (1/a? - 1)

iff g(k,a) > 0 for

k > ko for some integer ko >1,

86

where g(x,a) = 2 x log (1/a? - 1) + log a? - (x+1) log (x+1) + x log x .

ax

2 g(x,a) = 2 log (1/a? - 1) ~ log (1 + 1/x) > 0

tff x> 1/[(1/a? - 1)? - 1)

In order to cvaluate this inequality, we now fix

a = ao . Let

G(x) = g(x, uo)

S am —

b
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Thus G'(x) = g%-g(x,ao) >0 1ff x> 0.94 . So G(x) 1is a
monotone increasing function for x > 0.94. Now G(4) = -0.476 and

G(5) = 3.698. Thus g(k,ao) >0 for k2>5. g.e.d.

Now we can apply Theorem 2 of §12.3 and Lemma 4 to obtain the

following two necessary lemmas.

log -log o,
Lemma 5: If pivot[5]) ¢ 2 , then h(n,ao)/h(h,ao) <3 (n-1)

< 0.613 (n-1)0-446

Proof: By Theorem 2 of §12.2 and Lemma 4, h(n,uo)/h(4.a)

log @ ~log @
<3 %@ 0 < 0.613 (a-1)0"4%¢ | g.e.d.

Lemma 6: If pivot[5] = 2 , then h(n,ay)/h(3,a,) < 0.717 (n_1)0-4‘6 .

Proof: If pivot{5] = 2 , then pivot{6] # 2 , so by Theorem 2 of

log %y -log a,
§12.2 and Lemma 4, h{(n,a)/h(5,a) < 4 (n-1) . Since
1 1
L L 1,5 Se/3 1 1[4 412
pivoc(s) = 2, (8] 8 1/2= g G5z )" qo5r) e
loga i1
W 0 (8] 8e} 2 917 . g.e.d.
1
2 ,1/2 ,
Now we need only to bound (82 83 } for pivot[5) = 2 and
11
2 3 1/2
{82 B, B, } for pivot[5) # 2 .

(]./(!.0)3/2 1f pivot[2] =1
Lemma 7: If pivot[3) = 1 , then h(3,a0) =

I‘—l(w) if pivot[2] = 2
0 0

L

< 1.96.

T T IR




Proof: Since pivot[3] =1 , B = J% and pivot [2]) ¢ 0 .

3 ao
1
-~ if pivot[2] = 1
%
So 82 - , and h(3.a0) < 1.96.
——Lr e.d
l-af  if piver[2] = 2 q-€.4.

Lemma 8: If pivot[3] = 2 , then h(3,a0) < 2.74.

. - - 1 = l 3
Proof: Since pivot([3] 2, 83 I:ag- and 82 2 (I:Eg‘ ) .
q.e.d.
Lemma 9: If pivot(3] = O , then
1
41/3 = if pivot[2]} = 1
h(“.ao) iy penesali 0
3'4— vl"(]o
1 if pivot[2) = 2
/1—a8
1 1, 4 A3
Proof: Since pivot[3] = 0, B, = I:ag v By=73( I:ag ) ,
1
R if pivot[2] =1
and pivot{2] ¥ O . So 62 - 0 . q.e.d.
1 if pivot[2] = 2
1—a0’

Now we put Lemmas 5-9 together to get a bound on c(ao) h(n,ao)

which is independent of the pivotal selection.
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Theorem 3 c(uo) h(n,uo) < 3.07 (n--l)o'“6 <3/an for n>2.

Proof: From (12.2.1), c(uo)' d(Go)/Go ,
1 if pivot[l] = 1

d(ao) - R
1//1 - aé 1f pivot{2] = 2

Now we must consider various gsituationa.
Case I: pivot[5) = 2 : Then pivot{3) ¢ 0 . By Lemma 6,

h(n,ag)/h(3,a5) < 0.717 (n-1)0-44
(a) 1If pivot[3] = 1:

Then, by Lemma 7, h(3,a0) <1.96 . Since d(ao) <1/v1 - aé s

e(@g) hin,a) < 2.39 (n=1)2-4%¢ .

(b) If pivot[3] = 2:

Then pivot{l] = 1 . So d(ao) =1, By Lemma 8, h(B,ao) < 2.74 .

Sa clag) h(n,ag) < 3.07 (n-1)0-446 |

Case II: pivot{5) # 2 : Then pivot[4] # 0 . By Lemma 5,

h(thdo)/h(“,(lg) < 0.613 (n—l)o’bbﬁ )

(a) 1f pivot[4] = 2:
By Lemma 9, d(uo) h(é,ao) < 2.58 . Thus c(ao) h(n,ao) <

2.48 (a-1)0"44¢ |

(b) If pivot{4) =1 :

Then 8, = l/aé and pivot[3) % O .

89

M Jo ks 1




e e ————

s

(1) 1f pivot[3] = 2 :

Then pivot{l’ 1 , so d(uo) =1 . By Leuma 8,

h(J,aO) < 2.74, Thus c(ao)h(n,ao) <

(1/84)(2.74) Bi"’ 0.613) (n-1)2"%%6 < 3,04 (n-1)0-448

{(11) If pivot[3] =1 :

(1/(10)3/2 if pivot[2] = 1
By Lemma 7, h(3,a0) = j

| 1

—— if pivot[2] = 2
L Jaoll-aoz)

We must use this form of Lemma 7 in order to prove the theorem.

Once again we have two cases.
(A) If pivor[2] =1 ;

Then pivot[l] = 1 , and d(ao) =1l ., So

17/6 0.446

c(ao) h(n,ao) < (1/a0) (0.613) (n-1) <

2.17 (n-l)o"."6 .

(B) 1f pivot[2] = 2:

Then d(ao) = 1/vl - aoz . So c(o.o) h(n,ao) <

(l/ao)11/6

Thus, in all cases, we have c(ao) h(n.ao) < 3.07 (n-l)o'M‘6

’

0.446
n

Now 3.07 <3/mn for n> 2.

90

(/1 - Q;)] (0-613)(!1--1)0'41‘6 < 2.36 (n_1)0~446 )
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12.5 Baund on Element Growth

From §11.7 end §12.5, we see that the elements in all the reduced

matrices are bounded by vn f(n) o (3.07)(n-1)0'446 , where
o ° max |A1 | , under strategy S with a =a_ = (1 + /17)/8 for
1,1 3 v} 0

the pivotal strategies described in 86.1, §6.4, and particularly §8.].
For Gaussian elimination with complete pivoting (Wilkinson, 1961;

pp. 281-285), the bound on element growth is va f(n) Mo -

Thue, for a = &, , our bound for diagonal pivoting is within a

0.446

factor 3.07(n-1) of Wilkinson's bound for Gaussian elimination

with complete pivoting.

12.6 Conjecture for Gaussian Elimination

It is conjectured that the best possible bound :s n for real
matrices under Gaussian elimination with complete pivoting (Cryer, p.
343). The conjecture is false for complex matrices (Tornheiw, 1965).
For real matrices, the best possible bound 15 n for n = 1,2,4 and
is 2-1/4 for n = 3 .

A matrix K 1is & Hadamard matrix if |Hij| = 1 and th: rows of

H are orthogonal. Then the order of H 1s 2 or is divisible by &

(l)I >n (Cryer,

(Davis, p. 327). Under Gaussian elimination, |H
p. 343). Thus, a Hadamard matrix of order n has element growth of

at least n .
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1 :

If H 1is generated by temsor products of l. J (Davis, p. 326), !
1 - .

and if the order of H is n = 2% , then Iu(l)l -n=2°,

12.7 Conlecture for Diagonal Pivoting

E If d 18 as in the previous paragraph, then H 1is symmetric and

the diagonal pivoting method uses a 1x1 pivot at each step under stra- ;
k

tegy Sa for 0 <a< 1, and |H(1)| ane 2

i :
! We conjecture that the optimal bound for diagonal pivoting is of ;

(o

| -8
the form n q(a) . We need a function q(a) > 1 since
1 8

has o + 1l/a as its bound on element growth, where 0 <a < B <1 .

Thus, for n=a 2 , q(a) = (¢ + 1/a)/2 , and q(ao) =1.10 .

Or, we could conjecture a best possible bound of the form

nq(n,a) . Then q(2,a) = {(a¢ + 1/a)/2 and q(2,ao) = 1,10 .

12.8 The Optimal Choice of a

The optimal choice of a for 0 < a <1 is the value which mini-

mizes q(a) in 812.7 for all n . Or, we could seek a sequence of un
such that au minimizes q(n,0) in §12.7. But we do not know gq(a)
or q(n,a) for n> 2 .

We could choose a to minimize c(a) h(n,a) in (11.7.11). But
/n f(n) Ko c(a) h(n,a) 1is merely a bound on the element growth and is,

by no means, the best possible bound.
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Since c(uo) h(n,uo) < 3.07 (n-1) (512.4), while

min c(a) h(n,a) > (2.029) nO.J&SS (§12.2), our choice of a = %

O<a<l
gives us a bound (independent of the pivotal selection) for

c(ao) h(n,ao) which does not differ mucn from a lower bound for

min c(a) h(n,a) . We assert, further, that q(ao) is not much greater
O<a<l

than wmin q(a) .
0<a<l

We note that 4nf q(2,0) = 1 = q{(2,1) . But this implies that
0<n<l

a, = 1 , so we would use a 1x1 1ff one of the Jiagonal elem2nts were

2
maximal, i.e. if My < uo we must use a 2x2 and thus for n = 2 no

decomposition would be performed, which is to be expected since the
mninimal element growth occurs when we do no decomposition at all. Thus

inf q(2,a) = 1 = q(2,1) does not provide us with any information for
O<a<l

the general nt'h order case if we require a, to minimize q(n,a)

P

At N
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Chapter 13 : Iterative Improvemeunt

13.1 The Approximate Solution

Let us assume now that we have obtained an approximate solution
z to the system Ax=b, A= At, det A ¢ 0 , by the method of
diagonal pivoting. The approximate solution z to A x = b can be
considered the exact solution to the system (A + E) 2 = b .

In exact arithmetic, the method of diagonal pivoting would per-

form the following steps (see §10.2):

(1) A=MDpM"
2) ¢= m 1y
-1

(3) y=D "¢
(&) x=M"y
However, in finite precision we have error at each step. For some

error matrices F , Hl , D, and M2 , we actually perform (see §10.2):

(1) A+FeMDN

(2) ¢ = (M+ ul)'l b
M y=w+s D) e
(4) x« (M + MZ)-t v .

From §10.3, we see that z 1is the exact solution to (A + E)z = b ,

where
E=F+M (D+6D)M+ Mz)t +M[8D M+ Mz)t +D H;] }

From (10.15.6), we have for a = o4 (* ¥ is the one-norm):
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el < (23.54) n? 2°° max uék)

k
In Chapters 11 and 12 we have shown for a = ao :
max ui®) < VR E(m) uy (3.00) (-0 44

k

where uo = max IA
1,

1jl . Hence, for a = & ¢

e} < (72.3) n 2-9%4 £(q) Mo 27t
13.2 The Iteration

Let xl =z . For m=1,2,... we obtain an improved solution
X ,. to Ax=b by the following

(1) LA b - A X
(2) (A + E) dm =r

3) X" X tdn

We shall assume that (1) and (3) are done exactly. This is a
reasonable assumption if accumulated inner products are used (see
Wilkinson (1965), pp. 116-117).

Thus we shall assume the only error occurred when we trled to solve

A dn -, but performed (2) (A + E) dm = instead.

The 1iteration is meaningful only if the matrix A can be repre-
sented exactly in the computer, i.e. if the elements of A are known
exactly and no round-off occurs when the numbers are read into the

computer.

i o ot
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13.3 Convergence of the Iteration

We must now show that the X defined in §13.2 converge to the
solution x = A_1 b .

Theorem: Let x = Al b . Assuze 0A1 El =0 < 1/2 . Let
r,=b-Ax, , (A+g)d, =r and x = x_ +d, . Then
3 g0 e 4=y, g4 %t Yy
lim lxm -xlaqQ .
are

Proof: (A + E) dm-l =r " b-A xm~1 . So (A + E)(xm - xm—l) =

Ax - AXx . Thus (A + E)(xm - x) = E(xm - x) . Since det A ¥ O ,

m-1 --1

(1+al E)(x, - x) = Al E(x ~ x)

Let 0u|A-IB|<1/2. Let T=0/(l-0). So T<1.

Ix - xb < b - xl 1272
o <

Iy -1at el - xt
o1 El/(1 - 147" E) = 1 Ix x

-1

I

Ly, - xb . Since T <1 , lim |xm -xl=0.
+ o q.e.d.

Thus th2 iterative vectors converge to the solution x = A_l b

provided that |A—l E} < 1/2 . and the convergence in monotone in the

o 1.e. Ix -xl < Ix - xl.
norm, o+l - m

Now we must give conditions under which 1Al Bl < 172 . We shall

n
use the one-norm: Ixl = z lxil and MAl = max z IAijl

1=l § 1=l
Corollary: If (72.3) n2'9446 f(n) w(A) Z—t < 1/2 , where
k(a) = tal 1AM | then 1lim lxm -xl =0 where x=aAlb .

o

st Ltk b halbas st o che i et s amniin
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Proof: From §13.1, ME! < (72.3) n £(m) u, 27 But
Mg < 1Al , so 127 Mg < K(A) . Eence (PR (72.3) n2'9“.6
N f(n) x(A) 2t , and the corollary follows from the previous theorem.
qg.e.d.
i M We sce that the convergence of the iterates depends on the condi-

tion number of A , and so we cannot expect iterative improvement to

be of value for 1ll-conditioned matrices. For further remarks on

Y e

condition numbers, see Wilkimson (1965); and on iterative improvement,

see Fox (pp. 49-53, 109-113) and Moler (pp. 316-321). As we noted in

% §13.2 the itevation is meaningful only if no round—off occurred while

reading A 1into the computer and 1f the elements of A are exact. i

TR
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Chapter 14 : Symmetric Band Matrices

14.1 Gaussian Elimination for Band Matrices

Let A be an nXn non-singular band matrix with band widrh

wtl << n, dee. A =0 lf lt-j] > w .

We could store A in (2w+l)n locations rather than n? loca-
tions by ignoring Aij for |1—j| >m . If we could preserve the
band structure while solving A x = b , then we would save storage
and thus be able to solve band matrices of very large order in rela-

tively few storage locations.

If we use Gaussian elimination with complete pivoting, then we

must interchange to bring the maximal element to the leading diagonal
position. This could destroy the band structure and we would need
n? locations to store L and U in the decomposition.

If we use Gaussian elimination with partial pivoting, then L
is unit lower trisngular with L, = 0 if |1-3] > m+tl and U is
upper triangularwith U, =0 1if |1-j| > 2m+l . Thus L can be

14
stored in mn locations and U (n (2w+l)n locations. Since L
and part of U can be written over A , we would iced only mn
additional stotrage locations.
Thus if A 18 an nxn band matrix with band width 2a+l and
if b 13 a8 vector of length n , then Gaussian elimination with
partial pivoting requires only (3m+2)n storage locations to solve

Ax =b . Furthermore, this method requires only ~ (2m® + 4m + 1)n

multiplications and additicns.
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14.2 Diagonal Pivoting for Symmetric Band Matrices

Let A be an nXn symmetric non-singular band matrix wich band
width 2m+l . If we use diagonal pivoting (see Chapters 5, 6 and 8)
to solve A x = b , then interchanges can destroy the band structure

n? storage locations.

~of—

and we would need

We have investigated many variations of the diagonal pivoting
method for the symmetric band case, but these algorithms have either
been unstable or have required more storage and operations than
Gaussian elimination with partial pivoting.

At the present time we recommend Gaussian elimination with partial
pivoting rather than the djagonal pivoting methad (see Chapters 5 and
8) for symmetric band matrices, and thus we are unable to take advan-
tage of the symmetry. (For the special case of symmetric tridiagonal

matrices, see §14.3.)

14.3 Symmetric Tridiagonal Matrices

We are able to present a stable algorithm for the symmetric tri-
Jdisgonal case which requires less storage than does Gaussian elimina-
tion with partial pivoting.

Let A be an nxn symmetric non-eingular tridiagonal matrix,

t.e. A, =0 if |i-jJ|>1 . Llet A, =a, for 1 <i<n and

13 11 %4
- < - <
A1’1+1 = b1 A1+1,i for 1 <1< n-)l . Asgume |all <a , while
wax |a,] , max Ibil <8 .
2<i<n 1<i<n~-1
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Let us consider only the first step, which is typical (cf.

Appendix A, 5A.3).

(n-1) _ A

If b, = 0, we have nothing to do, and Aij 141,441 °

1

Suppose b1 $# 0. Let r be a non-negative integer such that

2" > 8. i
1€ lall > 27F bi , then a, # 0 and we shall use a, as a
(n-1) _ -
1x1 pivot. Then M,, = b /a » Ay a, = M, bl , and
(n-1) _ (n-1) r
Aij = A1+l,j+l . Thus A is tridiagonal, |M21| <2 /|b1|
IA(“ Dy <g+ 2", while |A(“ D < B otherwise. ‘I
a5
1 |a < 27F b} , then ve shall use as a 2x2
b1

pilvot. (Note that we make no interchanges.) Then

_ R? 2 _ i 2 _ 97X 2 _ =X
bil 2 b - fa; &, > b7 (1 -2 |az|)3bl(1 27 8)>0 i

la; =, 2|

since 2 "B <1 by assumption. '

- - - b2 w2
Now M31 bl b2/(al a, bl) , M32 a, b2/(a a, bl) ,
A(n=2) _ (n-2) _ (n-2)
11 = a, M32 b2 , and A1j Ai+2,j+2 otherwise. Thus A

-r
is tridiagonal, lM3l| < |b2|/[|b1] a-2"81,

Myl <25 8/a-278 , AP <8/a-278), uile

‘(n 2)
1]

| < B otherwise.

(n-1)

We see that the bounds on the elements of A for a 1x1

and A(n-2) for 2x2 are independent of the bound a on |al|
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Thus the pattern continues throughout all the reduced matrices. Hence

we conclude : each reduced matrix A(k) is tridiagonal,
|A{:)| < max {8 + 2" , 8/(1 - 277 B)} , while |Ai§)| <8
otherwise.

Usually we normalize by choosing B = 1 . Then,

1A% < max (1427, 170 - 275}, while A | <1 othervise,

13
(k)

for each reduced matrix A . Since 2°>B8 =1, > 1 . Hence

k)

|Ai1 | <1+ 2" . Thus given any positive integer r , we have

wax max IA(k)I <1+2" (=3 for r=1)
kot 4T

A backward error analysis of this algorithm shows thut it is very
stable (eince the elements of all the reduced matrices are bounded by

1+ 2 , which takes on its minimal value 3 for r =1 ).

Thus we can decompose A = M D Mt , where D 1is block diagonal
with blocks of order 1 and 2, and M {38 unit lower triangular with

Miyp,0 =0 4f Dy, #0 andvith IMijI =0 if 1> j+2.

We shall need an n-vector array to record the pivotal selection.

(k)

We set pivot[k] = 1 (2) 1f we use a 1x1 (2x2) pivotr for A 1f

pivot{k] = 2 , we set pivot[k-1] = Mn—k+3,n—k+1 . Then we need only

2n storage locations to store the rest of M and D (these we write

101

over A ). Thus we need only 3n storage locations for this algorithm.

From §14.2, we see that Gaussian elimination requires 5n storage

and 7n operations, and is very stable for tridiagonals (see Appendix

A, 8A.3).




We would also like the number of operations required for our algo-
rithm to be less than 7n . However, if we use the algorithm in the
manner in which we have expressed it, &% n- 2% p multiplications
and 5n additions are required, where p is the number of 1x1
pivote used. Thus between 6m and 8% multiplications are required.
(We ignore multiplication by 2° 4p the count.)

However, we can reduce the number of multiplications from

&% n - 2% p to 7% n- %-p if we implement the algorithm in the

following manner:
(We present the first step of the algorithm in Algol form):
if b[1l] = O then M[2,1] := 0
else begin temp := a[l]/b[1];
if abs (temp) > abs (b[1])x2+(-r) then
begin M(2,1] ;m 1/temp; a[2] := a[2] - M{2,1]xb[1l] end
else begin cglc := tempxa[2] - b[1l];
M{3,1] := - b[2]/calc; HM[3,2] := - tempM[3,1);
af[3] := a[3] - M[3,2]xb(2] end

end;

A backward error analysis shows that this implementation of the
algorithm is also very stable (since all the reduced matrices are

bounded by 1 + 2F ).

Now min (1 + 2°) = 3 for r =1 , while ( 7% n - % p) *+ 6n
>l

as r +« (since the larger r 1is the more likely the choice of a




1x1 pivot becomea). But (1 + 2r) +® g r <+, and thus we would
not have a good bound on the error matrix for large r . Thus in
practice, we must make some reasonable choice of r > 1 8o that
1 +2° 18 not too large but so that 7%-n - %-p is reasonably small
(1.e. a8 close to 6én as possible, and hopefully not more than 7n ).
We have considered many versions of diagonal pivoting for the
tridiagonal case. The minimal storage possible is 3n . The above-
mentioned algorithm had the least cperation count of all the versions
studied.
Since this algorithm requires between 6n and 7% n multiplica-

tions in comparison to 7n for Gaussian elimination with parcial

pivoting, we can recommend this algorithm for general use nnly if

storage of Jn rather tham 5n 18 crucial to the user.
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Appendix A : Miscellaneous Results

A.l Diagonal Pivoting for Positive Definite Matrices

If A 1is an nXn symmetric positive definite matrix, then the

maxima! element of A {18 on ite diagonal. So Ho = ¥y and, according

to Sa , we use that maximcl diagonal element as pivot. But A(n-l)

is also positive de.in'te. Thus p = n (where p is the number of
1x1 pivots used in the decomposition.)

Since uék) - ufk)

for each A , calculating u is unne-

() (k)
0

cesgary. (This calculation would require “'% n® additionms for all

(k)
Yo

the .) Thus if we know that A 1is positive definite, we may

omit the calculation of the , end our method is ildentical to the

(k)
Ho
method of congruent transformations (£2.7). If we also omit the cal-

culation of u{k) and use the first diagonal element as a 1x1 pivot

{(non-zero since A 1is positive definite), our method is identical to

LD L° (52.7).

From the above we seé that the L D Lt method and the mcthod of
congruent transformations (i.e. L D Lt with pivoting on the diagonal)
are special cases of the ciagonal pivoting method, and either of these

may be used if A 1is definite. (See §8§2.6 - 2.11 for further remarks

on this topic.)

L1




In our algorithm for the diagonal pivoting method in Appendix C,

we allow the following options:

% {1) 1f A 1s indefinite, then we must use diagonal pivoting.

(2) If A 1ie definite, then we may use:

(a) LD L® wich pivoting on the diagonal (by omitting the

b * calculation of the uék) ), or

. () LD Lt (by omitting the calculation of the uék) and the
(k)

Ul ).

E A.2 A Regult for Symmetric Hadamard Matricee

§ An nxn real matrix H 1is Hadamard if |u1j| =y, for all

[: 1, where uo >0, and H Ht = n ué I . Usually we normalize by

choosing uo = 1 , Thus all the elements of H are of the same modu-

lus, and the columns of H re mutually orthogonal, i.e. if H, 1is

3

fé the jth column of H , then H; Hj = n Gij where
1 1f 1=
61‘1 - is the Kronecker delta.
0 if 14§
. 1f the diagonal pivoting method or symmetric Gaussian elimination
‘ 3 is used to solve H x = b , then “11 is used as the pivot for the

H(n-l)

firat step under any strategy. Then the reduced matrix has

the following interesting properties:

H(n-l)

f Theorem: is not Hadamard, and the angle between any two

(n-1)

columns of H is ©/3 .

e gy T




Proof: Let us assume Mg = 1 . We use Hll as pivot. Let

p=pu®)
Then Bij = H1+l,j+1 - H1+l,l Hj+1.1/dll for 1 <1,j <nl,
¢ n-1 n-1
= - - x
B, B DBy Bee = 1 e e . TR LY
k=1 k=1
Moip ke ™ Raar,1 Heer, 1/
=t w .. -nutw. /4,.) - S H . (H /R, ) +
r+l s+l 1 s+l x+1,1" 11 1 r+1"5+1,1" 11
t 2 - t t 2
Hy Hy (Hoyoq oy g/H)) = B Hop) FHVH) () Beg 1 /8) -

t t
* = P a
If r s , then H 1 H 1 Q s, 50 B B i n since

t
Hij = + 1 for all 1i,j and Hl Hl =n .

Thus B: BS #0 for r ¢#s , 80 H(n-l) is not Hadamard.

Further B Br n+n (Hr+1,llull) 2n . Define

i #2 = pt ¢ s) = BY TR
Br Br Br and cos O0(r,s) Br Bs/( Br BS ). Then

cos O(r,s) = 2 1/2 , so O(r,s) = + /3 for r ¢s .
g.e.d.
A similar result holds for Hermitian Hadamard matrices.

A.3 Gaussian Elimination for Tridiagonals

Let T be an nxn tridiagonal matrix (i.e. Tij = 0 for

li-3} > 1). Suppose |T11| <a, and lTijl < B otherwise.




(k)

Theorem: Let T be as above. Then for any reduced matrix T

under Gaussian elimination with partial pivoting : T(k) is tridiagonal,
&)y . (k) <
ITll | < 28, and 'Tij | < £ otherwise.

Proof: The situation for k = n-\ is typical.

If |Tll| 3»IT21I , then we vse T.. as the pivot. So

11
MOLES o (n-1) _ .
T '1‘22 121 12/T11 , while Tij T1+l,j+1 otheswise. Thus
D g tridiagonal, |T{?-l)| <28, and |Tig-l)| <8

otherwise.

1f |T11| < It , then we interchange tue first and second rows

2l

(n-1) _ _ pn=1) _ _
and use T21 as the pivot. So Tll le '1‘11 T22/T21 . le T23 T11
(n-1) _ _— (n-1)
while Tij T1+1,j+l otherwise. Thus T is tridiagonal,
IT{?-I)l < 78 , and |Tf?-1)| < B otherwise. q.e.d.

From the theorem and 52.5, we conclude that Gaussian elimination

with partial pivoting is very stable for tridiagonal matrices T ,

since max max ITi§)| < 2 max |T1j
k 1,) i,]

/T21,
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Appendix B : Algorithm for Symmetric Equilibration

B.1l Discussion

12 0 g
r

‘The following Algol procedure will equilibrated any n*n sym-~

metric matrix A 8o that D A D 1is equilibrated, where D 1is
diagonal. A 1s replaced by D A D , and the inverses of the diagonal

elements of I are stored in the vector d . (See Chapier 7.)

B.2 The Algol Procedure

procedure symequil (A, n, d);

value n; array A,d; integer n; !

comment the symmetric matrix A of order n 1is equili-
brated and the symmetric equilibrated matrix D A D 1ie
stored in A , where D“l = diag (d{1}, ..., d[n]);

begin integer 1,}; real ¢;

for i := 1 vtzp L until n do

begin a{i] := sqrt (abs (A[1,1]));
for j := 1 step 1 until i-1 do
begin t := abs (A(1,j));
if © > d[4] then dfil := ¢
end;
if d[i] ¥ O then
begin for j := 1 step 1 untii i do
Ali,3] = AlL,31/411];

\

for J := 1 step 1 until n do

Aly,1] == Af3,11/d[1);




Pl
end ;
end;
|
i
]

for i :=1 gtep 1 until n do

\
if d[i] = O then
. begin for j := 1+l step 1 until n do
: begin t := abs (A{j,1]);
i if t > d{4i] tuen d{1] := ¢
i end;
§ 1f d[1] = O then goto alarm;
ﬁ for j := 1+1 step 1 until n do
Al3,1) := A[3,1)/4(1);
EOto out;
: end;
* T
E alarm: print (‘this matrix has a null row’)
; ; out : end;
f 3




Appendix C : Algorithm for Diagonal Pivoting

The following listing of an Algol procedure will solve A X = B
by the diagonal pivoting method, where A 1is an nxn non-singular

symmetric matrix and B 1is a vector of length n .

The L D L' method (symmetric Gaussian elimination and the
method of congruent transformations (L D LY wien pivoting on the

dlagonal) are special cases of the diagonal pivoting algorithm.

The matrix A 1s assumed to be stored only in 1ts lower triangular
part. A 1is decomposed into A =MD Mt s, where M is unit lower
triangular, D is symmetric block diagonal with blocks of order 1 or
2, and M[i+l,i] = 0 when D[i+1,i] # 0 . M and D are written

over the lower triangular part of A .

A is declared [l :n, 1 : n)] and B 1is [1 : n] . Upon exit,
the solution X to A X =B 1is stored in B , f.e., X[i] s

stored in B[i]

If A is indefinite, then set DEF = 0 and the general

diagonal pivoting method is used.

If A 1is {positive or negative) definite, then we may omit the
calculation of the maximum off-diagonal element in the reduced matrices.
If DEF =2 then this is omitted and the algorithm is identical to

L DL with pivoting on the diagoral. The pivoting on the diagonal




]

S, e

S

X st e st bt

C-2

may also be omitted if desired by seiting DEF =1 , and then the

algorithm is identical to L D L% .

The algorithm,as presented below, is by no means, in its most
efficient form. In particular, as written, no advantage of symmetry
is taken to treduce storage. Instead of using only the lower triangular
part of All:in, 1l:u], the algorithm should be coded so that the lower

triangular part of A 1s stored in a one-dimensional array of length

% n (n+l) . Further, B[l : n} could be replaced by B[l:n, 1:k]

for solving a system with k right hand sides.




FPROCELUPEZ LTVOTIrG (AsRergDEF) o
FVALUFZE fAeDEF o
PARDAYRE 2R o, 2INTEFGERZ NyNEF 49

2COLMENTE  SULVFS A X & R BY THFE DTAGONAL PIVOTING MFTHOD
WrERE 8 TS A SYMuFTRIC MATRIX OF ORDEFR N AND
R 1S A VErTNR OF LENGTH N a4

2COMMEFNT2 o LS ASSUMED TH BE STOREN ONLY IN ITS LOWER
TkIANGLLAR PARTe M AND D ARF WRITTEN OVER A WHERE
A =¥ L v TRANSPASEs M 1S UINIT LOWER TRIANGUL AR,
AMi: 13 1S aLOCK D1aGONAL WITH BLOCKS OF CRDER 1 OR 2
ARG M (/1evel/) = o WHEN D(/T¢lel/) #NOY EQUALZE 0 o9

2COeMENT2 TF A 1S INDEFINITES SET NEF = o AND THE D1AGONAL
PIVOTING METHOC 16 USENes

#2CNMMENT? TF & 18 (FOSITIVE 0w NEGATIVE) OEFINITEs THEN
SET LEF = 1 ANC L O L TRANSPOSE WITHOUT PIVOTING
witl. ME jeEDy CR SET DFF a 2 AND L DO L TRANSPOSE
wltTH PIVOTING CN THE DYTAGONAL WILL BF USFED o4

2hFECIME 2 INTECEFO2 ToJdeKReS o
tREALE MOy t1e UETe SAVFe TFMPs ALPHA L
FINTEGE 2 2ARRAYE CHAYGE (/T1eoN/) o
PARBRAYE PIVOT (/YeetiZ) o0

tPLNCEIUREZ MAALRTIAG (AaKahoeJoM)) Lo
ZVALYUF?2 KaN o9 Z20RRAYE A 4 2INTFGERZE Koned o
ZREALZE MY e
2COMMENT 2 CALCULATES THE maXIMum NF THE DIAGONAL OF A 4 Ml =
MEX ABS(A(/197/)) FCR K %LCO#* I #LEG® Ny AND J IS THE
LEAST TrTEOGER SLCH THAT MY = ABS(A(/Jed/)) o
FREGINZE 2INTEGERZ T o0 Ml 2 AHQUAU/KIK/)) o9 J ou K 4
#FCR# 1 .3 K¢] 2qTEP2 1 zUNTIL#® N #0DO#
21F¢ AaS(pa{/191/)) »GREATFR® M1 ATHENE
#PECINZ MY ,3 ABe(A(/I41/7)Y o0 J o= 1 2END®
TFaDZE MAXDTAR o

2PRUOCFDUREE MAX A (AsKort gRISIMOsL ML) o
AVALUE? KolglLem]l o0
ZARRAYZ A o 2INTEGERg KoNepeSal .o 20FALZ MOGMT .
reOMrENTE CAp CULATES MO = MAX ARS(A(/10y/) ) FOR
L 2LFUY T4u #LEQz N AMD THE INTEGERS R AND S SUCH
THaT AES(A(/ReS/)y) = Mpy IT 1S ASSUMED THAT M) =
MAX (AES ¢ A(/T91/7) ) ) AND M1 = ABS( A(/LaL/) ) o
‘UEGIN$ *1":Tt(;F_F¢ I’\J P M0 o= Ml 40 R e2 § o F L ot
$EOR? § oz x ¥STFPZ Y ZUNTILZ Nel #0n0%

B AR T
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2F0RZ J oz x #STFPE RUNTIL® N #D0#
250p2 1 o5 el 2STEpz 1 2UNTIL#Z N #00¥
21F2 ang ( A(/1eJ7) ) 2GREATER® MO #THEN®
FpEINE MO L x ARS ( AL/T0J/) LS |
ke ] o0 S % J 2ENDE L
EENNE KAXG o0

fPROCENURE2 INTFRCHANGE (A9KeT) oy
#VALUF? Kel o4 #ARRAYS A 40 HINTEGERE Kol o0
2rOvMEr T2 INTERCHANGES ROW AND CALUMN K WITH ROW
AMD COLUMN T WHERE K #GER® 1 AND A 1s THE REDUCED
MATRIX OF CRIER n=l?l L
2REGINE zkbpLz TENMP o, BINTFGFR® J ov
2FORZ U o= xel 2STEpe 1 ZUNTIL# N 20O%
2REINZ TEMP g2 A t/JeK/) a0 AlLZJeKZ) om AL/Je1/) o9
A(/Jl!/) '8 TEMP 2ENDZ o
2ENRZ J et Tel 2STEp2z 1 #UNTILZ Kel 2004
2HECINE TENP o AL/ 1/) oo 8{/7Js17) o= Al/KeJ/Z) oo
AtsReS/) ,3 TFMPp 2ERDYE 40
TEMP .= A(/T¢1/) o0 ALZT017) o3 ALZKOR/Y oo
A{/Ker/) = TEME
2 MNE Tt TERCHANCF o

ALPHA o= {1 ¢« SQRT(17) 1/8 4

‘ oF 1 e
START,.

21Fs DEF = ) yTHhENZ
sHEGINZ CHANGE (/7/) o2 1 o4 2GOTOR PIVOTONE 2END® o,
MLXPLANR (BeTabaKaN]) Lo
21Fy OFF = £ 2THENZ
2HFGINZ INTEQCHANGE (AeKo1) o9 CHANGE (/1/) o= K o
2GoTC2 PIVCTONE 2FNDE 0
MAXD (AsTINgRyStMOyKeNn]) a9
21Fs M1 #NOT _FSS# MO & ALPHA #THFNZ
#uFeInNe INTERCHANGE LaeKel) oo CHANGE (/71/) o X 49
20010% PIyCTONE 2FNDE 0
CHANGE (/T1/) o% § o0
2162 S #GREATFR# 1 #TuFN2  TNTERCHANGF (AsSel) oo
CHONCE (/1¢1/) em R o0
21F2 R 2GHEATFR® Te] 2THENZ INTERQCHANGE (AsReI*l) o

250702 PIVOTTWD o

PIVOTOLE o0

21F¥ a(/1+17) & 0 STHENz 260T0% ALAPM o
2COMMFRT Y wF USE A 1X1 PrvOT ..
2FOR? J .,z 1] 28TEP# 1 #UNTIL# N 2N0% )
A(/J01/7) o3 AU/0017)7 AU/ T41/) oy :
2COMMENTE (/g ]1/) Has BEEwW SET FQUAL TO THE MULTIPLIER .9 1
2FOHZE J o= 1+)] voTEP2 1 sUNTIL 2 N 200#
2FOW? K .z 1+]1 2zaTEez 1 2UNTILZ J 2n0% ‘
AU/ JaK/) o= A(ZsK/) = A/ 1/ZYRAL/KAT/) o o




C-5

FCOMMERTZ WE A(/JeK/y HMAVE AFEN SET T0 THEIR NEW VALUES 4
#COMMENTE PTVNT/T/y & ) [¢ WE USE A 1X1 AT ROW I 4
PIVOT (/171 o8 1 4y 1 .2 147 .
t1Fs 1 20T GREATER®E N 2THENEZ 240TNn2 START
tFLSEZ? 2GnT0e Flanp C o,

PIVOTTRO o,

DFT o2 B(/TeT/)1%AC(/Tel0]®1/) @ A(/T0101/)8A(/10141/) o0
t[F2 nFT s [ #THENZ 260TO® ALARM 44
PCOMMENT 2 #F USE A 2X2 PrvOT o,

2EOvE J o= 1*z 2&1FP2 | 2UNTILZ N 2002

dufer 2 FFORE K o3 Te2 2STFPZ 1 FUNTIL® J=1 200%

ACZJsE Y o8 B(/JeK/) = A(/KQT1/18A(/Js]1/) = A(/K4101/)@
Al/JeTo1/) oo
2cOMMENTE TP E a(/0eK/7) HAVE BEEM SET 10 THEIR NEW VALUES o

SAVF e3 &(/7Je17) Lo TEMP o3 2(/Js1¢1/) 40
ALZJr1/7) o5 (A(/Z1413161/7)%SAVE @ A(/T4)s1/)VOTEMP) /DET o
ACZ001417) o5 (ALZT101/)RTEMP = A(/10)431/7)8SAVE)/DET 49
RCOLMENTE A(/0417) ANN A{/Jelel/) HAVE BEEN SET EQuAL
IC TwkE APPRAPRIATF MULTIPLIFR 4o
ACZJ0J7)Y oF A(/u0d/) o AlL/Jg1/718SAVE = Al/JeT01/)8TEMP 4
ZENDY
2CNMMEMTE RIVOT(/T/7y 2 2 IF WE UGE A 2X2 AT ROw I AND THEN DET IS
STCRED In FIVOT(/141/) o0
PIVOT (/17) = 2 o0 PIVAT (/1241/) o DET ot ] o3 102 4,
2IFz2 1 20CT GREBTYERZE N 2THENZ 260TN? STARY
tFISF2 260102 FIsp € oy

2COMBEMT2 MOw FORM ro= M InVERSE TIMFS R OAND STORE IT IN B o¢

"Irn ( e g

REPEAT .

SAVE .= R(/1/) o0 B(/A1/7) = RU/CHANGE'/1/) /) oo
R/ CHANGFLZIZ) /) o SAVE L9
#1F2 PIVeT(/17) = | #YHENZ RRFGINE
tFO0R2 U o2 Tel 2STEpz 1 #2UNTILZ N 200%
PO/7J7) o= B{/ZY/) = A(/Qe1/Y & BRU/1/) o
1 o= Tel ZfFnl @ #r|SEs #REGINg
SAVE oz b (/Te1/) Lo B{/1e1/) 4% R/ CHANGE(/1e1/3 /) oo
R(/ CHANGE(/T41/) /) om SAVE .
EFORZE | o= Ted #STEp2z 1 2UNTILZ N 2n0#
R(/737) o2 E(/J/) « AL/ e1/)V8B(/]1/)
- A(/74e1¢Y/7)0B(/1%)/) o,
1 oz T2 gErnE 4,
#1F¢ 1 ¥NCT GREATERZ + 2THENE 2GOTOZ2 REPEAT oo

I o= 1 o

ECOMAFETE ACuw SCLVF T Y = € AMD STORE ¥ IN THE VECTOR B o0
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SOLVF e

2lrz pIVOT (/1/7) ® v 2TuFNE
2LEGINZ RU/Z1/7) o3 R/T1/) 7/ A(/1e17) 4o
1 o= Tel 4o
21F2 1 #2GKRErTERE N 2THENZ 2GOTOZ FIND X
PFLSFZ2 26nT02 SOy VE o
tENRE G .
Teme ,& R(/L/7Y L4 SAVE .3 BU/T917) o0 DET e PIVOT(/141/) o

Q(/17) o2 ( TEMHRD(/T1¢)41*1/) = SAVESA(/T1+141/) V/DET 4o

HE 1e17) o2 ( SAVERA(/]417) = TEMpaA(/Telel/) VY/DET 4o

1 .2 J¢72 oy .

212 } 2GHFEATER2 N 2THNEng #GOTOx FINDX #2FLSE2 2G60TY0# SOLVE .+«

FOOMMED T4 NCW . SOLVE X ® M INVFRSE TRANSPOSE TIMES Y WHERE Y IS
STOREP IN THF VFCTOR B ANN STNARE X IN B o

FIHOX 44

T e M o0
CALC .o 2IFZ2 PIVCT(/1/y = 1 2THEMS
rufaling
2EORZ J o= Tel #STEpz 1 2UNTILZ N 200#
RU/17) o3 BI/IZ)Y = A(/II/ZVRBLUL/ YY) o
SAVE o= B(/17) o9 B(/s1/) .3 B(/7 CHANGE(/1/) /) .3
B/ CHAMNOE(/T/) /) .= SAVF o0 1 .= I=) 2END®
2FLaE# 2REGINZ 2FCR2 K .5 Jlelel #D0O#
2RFGIne
#rORZ J ex Tel #STEpz 1 RUNTIL#2 N #nO#
B/n/) oz B(/K/) = A(/JeK/VORI(ZJ/) e
2FNNDE o #FCR2 K e I=]l, 1 enna SREGINE
SAVE e3 R{/K/Z) eo¢ RU/X/) oa R(/ CHANGE (/K/) /) s
B8(/ CHANGF(/K/) /) o% GAVE o9 ZEND#,s
1 o= L2 2ENRR o,
21F2 1 #MLT LESSE ) 2THENZ #GOTOZ CALC .9

2GOTNE OuT o
ALARK o
OUTPUT (K1 2(2 #2{2 SINGAULAR MATRIYX #}2 )2 ) e

DUT oo 2FNDZ PIVCTITMG 4
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